Notice

Hewlett-Packard to Agilent Technologies Transition

This documentation supports a product that previously shipped under the Hewlett-
Packard company brand name. The brand name has now been changed to Agilent
Technologies. The two products are functionally identical, only our name has changed. The
document still includes references to Hewlett-Packard products, some of which have been

transitioned to Agilent Technologies.

o .'.:'}. - Agilent Technologies

Printed in USA March 2000

Handbook Supplement
Using HP Instrument BASIC
with the HP 8711C/12C/13C/14C
RF Network Analyzers
and the HP 8730A Tuner Analyzer

LA Facianc

HP Part No. 08712-90058
Printed in USA October 1996

Microwave Instruments Division

© Copyright Hewlett-Packard Company 1996

All Rights Reserved. Reproduction, adaptation, or translation without prior written permission
is prohibited, except as allowed under the copyright laws.

1400 Fountaingrove Parkway, Santa Rosa, CA 95403-1799, USA

Contents

1. Introduction

Overview of HP Instrument BASIC 1-2
Using HP Instrument BASIC 1-2
Allocating Internal Memory for IBASIC Use 1-3
Typographical Conventions 1-3
2. Recording Programs
Keystroke Recording Lo 2-1
What is Keystroke Recording? 2-1
IBASIC Programs and the HP-IB Buffer 2-2
What’s in a Recorded Program 2-2
The OUTPUT Statement o v v v v .. 2-3
The ASSIGN Statement 2-3
SCPI Mnemonics o . o e e e e e e e e 2-3
How Recording Works s 2-4
Operations That Do Not Record 2-5
Front Panel Operations Without Mnemonics 2-5
HP Instrument BASIC Operations 2-6
Operations Requiring Additional Programming 2-6
Synchronization 2-6
Active Control of the HP-IB Interface 2-7
Mnemonics With No Corresponding Front Panel Operation 2-7
Avoiding Recording Errorso o 2-7
Use Instrument Preseto 2-7
Specifically Select Parameters 2-8
Use HP-IBEcho e 2-8
3. Running, Pausing and Stopping Programs
Starting Programs Automatically 3-1
Running and Continuing a Program 3-1
Pausing a Program e 3-2
Using LOCAL LOCKOUT 8 to Disable the Pause Key 3-3
Stopping a Program 3-4
4, Saving and Recalling Programs
Selecting a Disk L s s 4-1
Saving a Program L L L0 4-2
AUTOST Programs o v v e e e e e e e e 4-3
Recalling a Programo 4-3
CAT to a String Array Exception 4-3

Contents-1

5. Developing Programs

External Editors 5-2
HP BASIC e e e e e 5-2
ASCIT Word Processors v v v v v e e e e e e e 5-2
Editing Your Program Using Edit 5-3
The IBASIC Editor Softkeys 5-4
Recording into an Existing Program 5-4
Editing with an External Keyboard 5-5
Inserting Lines o oo 5-5
Editing Lineso 5-6
Entering Program Lines 5-6
Editing from the Front Panel 5-6
Character Entryo 5-7
The Label Window 5-7
Inserting Lines o oo 5-7
Removing Program Text 5-8
Deleting Characterso 5-8
Deleting Lines oo 5-8
Recalling a Deleted Line 5-8
Renumbering, Copying, Moving, and Indenting Lines 5-9
Using IBASIC Display 5-9

Using Utilities e e e 5-12

6. Debugging Programs

Setting Breakpoints L Lo 6-2
Examining Variables 0oL 6-2
Examining Stringso e e 6-3
Examining Arrayso e e 6-3
Displaying the Last Error Encountered 6-4
7. Graphics and Display Techniques

Using the Display Partitions 7-1
Allocating Display Partitions 7-2
De-Allocating Display Partitions 7-3
Operation with No Display Partition 7-3
Displaying Text e e e e e e 7-4
Pop-up Message Windows and Custom Annotations 7-5
Graphics Initialization and Scaling 7-5
Using Graphics e e e e e 7-6
Drawing Figures Lo oo e 7-7
Graphics Exceptionso 7-9
GRID, RECTANGLE, POLYGON, and POLYLINE scaling differences 7-9
Labeling with Different Partitions 7-9
SCPI Graphics Commands o 7-10

Contents-2

8. Interfacing with External Devices

Communication with Devices 8-1
HP-IB Device Selectorso e 8-1
Moving Data Through the HP-IB 8-2
General Structure of the HP-IB 8-2

The System Controller 8-3
Using the Serial and Parallel Ports 8-3
Using the Analyzer Ports in IBASIC programs 8-3

Writeable Portso e e 8-4

Readable Ports [I=READIOCA,B) 1 8-4

General Bus Management oo 8-5

REMOTE e e e e 8-6

Host Instrumento e 8-6
LOCAL LOCKOUT e e s d e e e e 8-6
Host Instrumento e 8-6
LOCAL e e s e e e 8-7
Host Instrumento e 8-7
TRIGGER e e e e 8-7
Host Instrumento e 8-7
CLEAR e e e e 8-7
Host Instrumento e 8-7
ABORT e e e e 8-8
Aborting the Internal Buso, 8-8
HP-IB Service Requests 8-8
Setting Up and Enabling SRQ Interrupts 8-8
Servicing SRQ Interruptso 8-9
Example e e 8-9
Conducting a Serial Poll 8-10
Passing and Regaining Control 8-10

The IBASIC HP-IB Model 8-11
External and Internal Busseso 8-11
Service Request Indicators 8-11
IBASIC as the Active Controller 8-12
Passing Active Control to the Instrument 8-12
IBASIC as a Non-Active Controller 8-13

Interfacing with an External Controller 8-13
Synchronizing IBASIC with an External Controller 8-14

Using OUTPUT and ENTER statements 8-14

Using Status information 8-14

Design Rules e 8-15
Transferring Data Between Programs 8-15

Using OUTPUT and ENTER statements 8-15

Setting and Querying Variables 8-16
Downloading and Uploading Programs 8-17

Downloading e 8-17

Uploading e e e e e 8-18

Contents-3

9. Using Subprograms
User-Created Subprograms o e
Built-In High-Speed Subprograms
Example Programs 000 e e e e
Avoiding Multiple Loads of Subprograms

10. IBASIC Keyword Summary

11. Example Programs
Example Program Summaries
DATA_EXT — Data transfer between internal and external programs
DATA_INT — Data transfer between internal and external programs
DOWNLOAD — Download program to analyzer
DRAWS871X — Drawing setup diagrams
DUALCTRL — Two controller operation
REPORT — Using the parallel port
TRICTRL — External controller with local IBASIC controllers
UPLOAD — Upload program from analyzer

USERBEG — Set up user-defined User BEGIN softkeys

USERBEG1 — The default User BEGIN program
USERBEG2 — Fast recall of instrument states
USER_BIT — Using the USERbit
USERKEYS — Customized softkeys
USR_FLOC — Fault location measurements
BARCODE, STATS, DATALOG — Bar Code Programs
Example Program Listings
DATA_EXT — Data transfer between internal and external programs
DATA_INT — Data transfer between internal and external programs
DOWNLOAD — Download program to analyzer
DRAWS871X — Drawing setup diagrams
DUALCTRL — Two controller operation
REPORT — Using the parallel port
TRICTRL — External controller with local IBASIC controllers
UPLOAD — Upload program from analyzer

USERBEG — Set up user-defined User BEGIN softkeys

USERBEG1 — The default User BEGIN program
USERBEGZ — Fast recall of instrument states
USER_BIT — Using the USER bit
USERKEYS — Customized softkeys
USR_FLOC — Fault location measurements
BARCODE — Using Bar Code Reader
STATS — Using Bar Code Reader
DATALOG — Using Bar Code Reader

Index

Contents-4

9-1
9-2
9-4
9-4

Figures

4-1. The Sereeno Lo 4-2
5-1. The HP IBASIC Program Editor 5-3
5-2. The PC Keyboard .o 5-5
5-3. The IBASIC Display Partitions 5-11
7-1. Display Partitions on the Analyzer 7-1
7-2. Using INPUT with No Display Partition 7-3
7-3. Printing to a Display Partition 7-4
7-4. Pixel Dimensions with Available Display Partitions 7-6
7-5. “HELP” Program Output 7-8
11-1. Sample Bar Codeso 11-53
Tables
5-1. IBASIC Display Partitions 5-10
7-1. IBASIC Display Partitions 7-2
7-2. SCPI Graphics Commands 7-11
9-1. Built-in Subprogram Description (Filenames found in :MEM,0,0) 9-3
10-1. Alphabetical List of IBASIC Keywords 10-1
10-2. Categorical List of IBASIC Keywords 10-8

Contents-b

Introduction

A built-in HP Instrument BASIC (IBASIC) controller (Option 1C2) can be ordered with your
analyzer. An upgrade kit (HP model no. 86224C) is also available to add the controller to an
analyzer that was purchased without this option.

This manual describes creating and using IBASIC software in the analyzer. It demonstrates how
to use IBASIC’s programming, editing and debugging features. It also describes how to save and
recall programs and how certain instrument-specific IBASIC features are implemented in the
analyzer.

The reader should become familiar with the operation of the analyzer before programming it.
This manual introduces the IBASIC operating and programming environment and provides
examples of intermediate and advanced IBASIC programs. It assumes familiarity with the
analyzer and HP BASIC.

Related information can be found in the following references. Contact a Hewlett-Packard sales
or service office if you wish to order any of these documents. A list of HP sales and service
offices can be found in the “Specifications” chapter of your User’s Guide.

m Information on the IBASIC language, including keyword descriptions, error messages,
interface specifics and programming techniques is available in the HP Instrument BASIC
Users Handbook.

m Information on operating the analyzer is available in the analyzer’s User’s Guide.

m Information on programming the analyzer, including example programs, is available in the
analyzer’s Programmer’s Guide.

m Information on the analyzer’s HP-IB command mnemonics is also available in the analyzer’s
Programmer’s Guzde.

m Information on the SCPI (Standard Commands for Programmable Instruments) programming
language is available in A Beginners Guzde to SCPL.

m Information on using the HP-IB is available in the Tutorial Description of the
Hewlett-Packard Interface Bus.

Introduction 1-1

Overview of HP Instrument BASIC

When installed in your analyzer, HP Instrument BASIC (IBASIC) can be used for a wide range of
applications, from simple recording and playback of measurement sequences to remote control
of other instruments. IBASIC is a complete language with over 200 keywords.

IBASIC is a complete system controller residing inside your analyzer. It communicates with
the analyzer via HP-IB commands over an internal interface bus (select code 8). It can also
communicate with other instruments, computers, and peripherals using the external HP-IB
interface (select code 7) or the serial (select code 9) or parallel (select code 15) I/O ports.

Note The analyzer can also be controlled by an external controller. It has a factory
default external HP-IB address of 16. When using IBASIC to control other
instruments, no other device should use the same address.

The external HP-IB address can be changed using either the front panel

keys under the (SYSTEM OPTIONS]) HP-1IB menu, or the SCPI mnemonic
"SYST:COMM:GPIB:ADDR".

Using HP Instrument BASIC

You need not be proficient in a programming language to successfully use HP Instrument BASIC
(IBASIC). In keystroke recording mode, IBASIC automatically builds an executable program by
capturing measurement sequences as they are performed. With little or no editing of these
program lines, you can immediately put your program to work controlling and automating your
analyzer.

IBASIC’s programming interface includes an editor. Softkeys are available to allow you to run
or continue a program or configure the display.

The IBASIC command set is a subset of the command set of HP BASIC. In fact, IBASIC
programs can be run on any HP BASIC workstation with very few changes. When an external
PC keyboard (with a DIN connector) is connected to the analyzer, the IBASIC user interface
emulates the user interface of the HP BASIC. The PC keyboard can be used for command entry,
editing and program inputs.

Using IBASIC, you can:

Create on screen graphics

Control other instruments and peripherals
Create interactive prompts

Simplify keystrokes with the key
Keystroke record programs

Run applications

IBASIC also works in conjunction with an external controller which can download and run
programs, query variables and respond to Service Requests (SRQs).

1-2 Introduction

Allocating Internal Memory for IBASIC Use

Your analyzer contains a volatile RAM disk that is configured for use with IBASIC. The
default condition set at the factory, allocates most of this disk’s memory for IBASIC use.

To see what the current allocations are for this disk, press Select Disk
Configure VOL_RAM . A message will appear on the analyzer’s display that shows total
memory available, and how the memory is currently allocated.

To change the allocations, use the Modify Size softkey. The number you enter with the

Modify Size softkey, is the percentage of memory that will be used for normal disk functions
(such as storing instrument states). The remainder will be allocated for use with IBASIC.

Note You must cycle the power on the analyzer for new allocations to take effect.

Typographical Conventions

The following conventions are used in this manual when referring to various parts of the HP
Instrument BASIC and analyzer operation environments:

The name of a hardkey on the front panel of the analyzer. This
notation is also used to represent keys on an external keyboard
connected to the analyzer’s DIN interface.

Softkey The label of a softkey.

Softkey ON off Upper case selection in a softkey indicates the state AFTER the
softkey is pressed.

A series of hardkeys and softkeys represents the path to a given

Softkey 1 softkey or menu.

Softkey 2

<element> Angle brackets are used to signify a syntax element in a statement.

Introduction 1-3

Recording Programs

IBASIC programs for the analyzer can be created from the instrument’s front panel using an
external PC keyboard (Option 1CL) on an HP controller running HP BASIC, or on a workstation
or PC using a text editor.

Keystroke recording, described in this chapter, is ideal for creating simple programs or
measurement sequences for instrument control. If a program requires data processing, decision
making, or prompts for an operator or graphical setup diagrams, these must be entered using
another technique. Alternative methods of program development may be used to supplement
keystroke recording and create more sophisticated programs. These methods are covered in
Chapter 5, “Developing Programs.”

Keystroke Recording

Of all the available methods of creating IBASIC programs, keystroke recording is by far the
easiest. It requires only a couple of steps to set up and run, and can be accomplished with very
little knowledge of programming.

What is Keystroke Recording?

Keystroke recording is a way to automatically create IBASIC measurement sequence programs.
To enable recording, simply press (SYSTEM OPTIONS) IBASIC Key Record ON off . Then press

the normal key sequences of a measurement on the analyzer. Press (SYSTEM OPTIONS) IBASIC

Key Record on OFF to terminate the recording. The resulting program can then be run by

pressing Run in the (SYSTEM OPTIONS) IBASIC menu.

IBASIC programs communicate with the analyzer over an internal bus. They use the same set
of commands used by external controllers for remote operation of the instrument. Keystroke
recording works by finding the bus command, called a SCPI mnemonic, that fits each operation
performed from the front panel and then building a program line to perform that operation
when executed. All program lines built by keystroke recording are entered into the analyzer’s
program buffer. If the buffer contains no existing lines, a complete executable program will

be created. If there is a program in the buffer when recording is turned on, the recorded
statements are simply inserted into the existing program. Refer to Chapter 5, “Developing
Programs,” for a description of how to record into existing programs.

Recording Programs 2-1

IBASIC Programs and the HP-IB Buffer
Recorded programs work by sending HP-IB commands to the instrument.

These commands are queued into an input buffer by the instrument. An IBASIC program
generally outputs the commands much faster than the instrument can execute them. This often
causes the program to complete while the instrument is still executing commands in the input
buffer. The instrument continues processing these commands until the buffer is empty.

This may have some side-effects if you are not aware of this interaction. For example, it may
not be immediately obvious that the program has actually finished, since the instrument is still
functioning “remotely.” This could cause confusion if you try to pause and continue a program
that has actually completed.

You can clear the buffer from within your program by inserting the statement CLEAR 8 at the
beginning of your program (see Chapter 5 for information on editing programs).

Another side-effect of the speed with which the analyzer processes commands is that it is
possible for a command to execute before a previous command has completed execution. The
most common example of this is a data query that executes before a measurement sweep is
complete. This interaction can lead to erroneous data being collected. For more information
on synchronizing the execution of commands, refer to “Synchronizing the Analyzer and a
Controller” chapter in the Programmer’s Guide.

What'’s in a Recorded Program

If you look at any program created using keystroke recording you will find that it is composed
of three fundamental IBASIC statements: ASSIGN, OUTPUT and END. The following simple
program demonstrates these statements:

1 ASSIGN @Rfna TO 800
2 OUTPUT @Rfna;"SOUR1:POW -10 dBm"
10 END

The ASSIGN and END statements are automatically created when keystroke recording is used to
create a new program (as opposed to modifying an existing one).

There will only be one ASSIGN statement at the beginning of a program and one END statement
at the end, but in a typical program there will be many OUTPUT statements. Since the OUTPUT
statement does the actual work of controlling the analyzer, let’s take a closer look at how it is
used.

Note The ASSIGN statement, which is automatically created, will vary depending on
the model of analyzer you have:
HP 8711C ASSIGN @Hp8711 TO 800
HP 8712C ASSIGN @Hp8712 TO 800
HP 8713C ASSIGN @Hp8713 TO 800
HP 8714C ASSIGN @Hp8714 TO 800
HP 8730A ASSIGN @Hp8730 TO 800

2-2 Recording Programs

The OUTPUT Statement
The IBASIC statement
OUTPUT <destination>; <data>

tells the internal computer to send some information <data> to a device at a specific address
<destination>. The destination can be a device selector number (example: 0UTPUT 800), or
a name representing a number, called a path name (example: 0OUTPUT @Rfna). The data can
take several forms but in recorded IBASIC programs it is a string containing commands for the
instrument (a mnemonic).

Although the 0UTPUT command is very flexible it is used only one way when generated by a
recording. The following represents a typical OUTPUT command from a recording session:

OUTPUT @Rfna;"SOUR1:POW -10 dBm"

Notice that the OUTPUT command is followed by a name representing a device selector (@Rfna),
followed by a semicolon and the data ("SOUR1:POW -10 dBm").

The ASSIGN Statement

The destination in an QUTPUT statement specifies the address of the device. In recorded
programs this address is represented by the I/O path name @Rfna. The following line appears in
all recorded programs before any OUTPUT statements:

ASSIGN @Rfna to 800

The ASSIGN statement allows you to substitute an /O path name (a variable preceded by the
@ symbol) for a device selector number. Therefore, after the above ASSIGN statement, the
program line

OUTPUT @Rfna;'"SOUR1:POW -10 dBm"
is equivalent to
QUTPUT 800;"SOUR1:POW -10 dBm"

The device selector 800 specifies the host instrument as the destination of any data sent by
the OUTPUT command. The program communicates with the analyzer via select code 8, the
internal HP-IB interface, which is only used for communication between IBASIC programs and
the analyzer. The analyzer will respond to any address on the internal interface from 800 to
899 (800 is typically used).

SCPI Mnemonics

The data sent to the analyzer by the OUTPUT command is called a SCPI (Standard Commands for
Programmable Instruments) mnemonic and is found in quotes following the device selector
path name and semicolon:

OUTPUT @Rfna;"SOUR1:POW -10 dBm"

SCPI is a standard instrument control programming language providing commands that are
common from one product to another, reducing the number of “device specific” commands. It
uses easy to learn, self explanatory syntax that provides flexibility for both novice and expert
programmers.

The SCPI mnemonic codes used by IBASIC are the same ones used to control the instrument
remotely via an external computer. External computers communicate with the analyzer over

Recording Programs 2.3

the external HP-IB bus while IBASIC programs communicate with it over the internal bus. In
our example, the mnemonic "SOUR1:POW -10 dBm" tells the instrument to set the source power
to —10 dBm.

For more information on HP-IB interfacing using IBASIC refer to Chapter 8, “Interfacing with
the HP-IB.” The SCPI mnemonics for the analyzer are documented in the Programmer’s Guide.

How Recording Works

To fully understand IBASIC recording, it is important to understand the relationship between
front panel instrument operation and the program that is generated to emulate that operation.

Note SCPI mnemonics entered in a program during a recording session do not have
a one-to-one correlation with the actual keys that are pressed during that
session.

The fact that the generated SCPI mnemonics do not exactly correspond to the keys actually

pressed is important to remember. As you press a sequence of keys to perform an operation,
the corresponding SCPI mnemonic for that operation is generated. The operation may take

one keystroke or several, but the mnemonic is not generated until after a valid sequence of

keystrokes is completed.

In other words, it is the functional operation of the instrument that is recorded as a mnemonic,
not the keystrokes that it takes to perform that operation.

For example, recording the simple key sequence: Level (=) (@) (0) Enter requires six
keystrokes and produces only one mnemonic, "SOUR1:POW -10 dBm", which is generated after
the sequence is completed. This is then automatically formed into the command:

OUTPUT @Rfna;"SOUR1:POW -10 dBm"
and inserted into the program.

This means that if you accidentally press the wrong key in a sequence, it may not show
up in the recorded program. Additionally, you cannot exactly mimic keystrokes to leave
the instrument in a specific front panel state, unless it is a state that appears as a natural
consequence of a completed operation.

As shown in the above example, pressing the hardkey in a recording session has the
effect of bringing up the menu, but does not, by itself, generate a program line. You
could not therefore leave the instrument with the menu displayed.

2-4 Recording Programs

Operations That Do Not Record

Although keystroke recording works automatically in most situations, there are some
operations that cannot be captured or can only be partially captured using this method. These
generally fall into one of the following areas:

m Front panel operations with no corresponding SCPI mnemonic (such as transitional key
sequences).

m [BASIC front panel operations (such as some of the softkey operations found under the
(SYSTEM OPTIONS) IBASIC menu).

m Operations requiring additional programming steps (such as passing control of the HP-IB to
the instrument for hardcopy output).

m HP-IB operations with no front panel equivalent (such as HP-IB query commands or data
transfer).

m Service menu keys (in general)

Note Do not recall programs in keystroke record mode; doing so will overwrite
previously recorded program steps.

Front Panel Operations Without Mnemonics
There are some areas of front panel operation which have no corresponding SCPI mnemonics.

m Most operations on the front panel that require numeric entry allow you to use the knob to
increment or decrement the current value. This will not record as a program line. You must
always use the numeric keypad or step keys to enter any value if you want the operation to
be recorded.

m During a measurement sequence it may take several key presses to cause an operation that
will generate a mnemonic. The transitional sequences between actual instrument events are
not recordable. For example: pressing the key displays the scale numeric entry, but
nothing is recorded until you enter a value for the scale parameter.

m Any default states you setup prior to recording or encounter while recording (and
consequently do not select) are not recorded.

m Use of step keys is not recommended because the results may depend on the function’s step
size, which may change as other parameters change.

Note Instrument states that are not specifically selected or changed are not recorded.

Since these default states are not recorded, you must either actively select them to generate
a program statement or make sure the instrument is in the same exact state when the
program is run as when it was recorded. This is discussed further in the “Avoiding Recording
Errors” section of this chapter.

Recording Programs 2.5

HP Instrument BASIC Operations

Some softkeys under the (SYSTEM OPTIONS) IBASIC menu cannot be recorded. Operations on

programs, such as Run, Continue, Edit and Programs , do not record. You
can, however, record display partitions and all other save and recall operations not having to
do with IBASIC programs.

Although IBASIC operations cannot be recorded, many do have corresponding SCPI mnemonics
that allow an external controller to control and communicate with internal IBASIC programs.
For more information refer to Chapter 8, “Interfacing with the HP-1B.”

Operations Requiring Additional Programming

Some operations that work well when performed from the front panel have circumstances
that require special attention when used in a program. This is due to two kinds of problems,
synchronization and active control.

Synchronization

Timing and synchronization must always be anticipated where one event must complete before
another can occur. One example of this is when you need to detect a state in the instrument
before issuing the next command. For example, suppose you want your program to perform a
limit test on data, but only after a sweep has been completed. You can record the command to
perform the limit test by pressing key sequences. However, to detect when the instrument has
completed a sweep, you must edit the program and include a routine that waits for a status
register to indicate the end of the sweep.

Note Synchronization is only a problem with overlapped commands (such as
the command to trigger a sweep), that is commands that don’t hold off the
processing of subsequent commands. The analyzer adds an extra command
*WAI when an overlapped command is created using keystroke recording.
*WAI prevents the analyzer from executing any further commands until the
overlapped command has finished. For more information on synchronization
see the “Synchronizing the Analyzer and a Controller” chapter in the
Programmer’s Guzde.

2.6 Recording Programs

Active Control of the HP-IB Interface

Some operations require the analyzer to be the active controller on the external HP-IB bus.
This generally means that the analyzer must be the System Controller (or active control
must be passed to it from an external controller, if one is connected). When an IBASIC
program begins running, however, the instrument’s active control of the external interface is
automatically passed to the program, so active control must be passed back to the analyzer
before these operations can be performed.

These operations include all of the following actions when they are directed to HP-IB devices.
Note that active control of the HP-IB interface is only a problem if that bus is being used.
Hardcopy output to devices on the serial or parallel ports do not require control of the HP-IB.

HARD COPY) Start
HARD COPY) Abort

You can keystroke record any of these operations but you will not be able to successfully run
the program that is generated. You will need to enter the program lines necessary to first pass
control to the analyzer and then wait for control to be passed back to the program.

See the “Passing and Regaining Control” section of Chapter 8 for an example of passing control
to the analyzer.

Mnemonics With No Corresponding Front Panel Operation

Several of the analyzer SCPI mnemonics for the instrument perform operations that are not
available from the front panel and which, therefore, cannot be recorded. These include
operations such as querying instrument status, transferring data over HP-1B, setting and
clearing status registers and general HP-IB housekeeping.

These operations are useful for the more advanced HP-IB programmer using IBASIC. Because
they fall outside the direct operating realm of the analyzer, they cannot be recorded. They
can be added to a recorded program using the built-in editor or another editing environment.
See your analyzer’s Programmer’s Guide for a complete description of the analyzer’s HP-IB
command set. See also “Built-In High Speed Subprograms” in Chapter 9.

Avoiding Recording Errors

Use Instrument Preset

In most cases, it is recommended that the key/operation be recorded as the first
keystroke recorded. This sets the instrument to its default state and avoids the risk of creating
a program that depends on instrument settings that were present at the time of the keystroke
recording but may be different when the program is run.

Recording Programs 2-7

You can include the command to perform a preset in your program by pressing (PRESET)
immediately after turning recording on. This inserts the following line prior to all other OUTPUT
statements in your program:

OUTPUT @Rfna;"SYST:PRES;*WAI"

See your analyzer’s User’s Guide to determine the specific preset state for your particular
analyzer.

Specifically Select Parameters

If you do not want the instrument preset before a recorded program is run (for example, you
may be recording a section of a larger measurement sequence), be sure to specifically activate
every instrument setting that you will need in your automated sequence. For example, if you
want the data format to be Log Mag, press and then Log Mag , even though Log Mag
is already the default setting. This will generate a program line to specifically set the data
format to Log Mag.

In some cases you may have to select another setting first and then re-select the original
setting in order to generate the correct program line. For example, if you want to generate
a program line to set the sweep trigger to Continuous, and you discover that it is already

set to Continuous when you start recording, press Trigger Hold first — then press

Continuous . You can easily remove unwanted program lines generated by this procedure in
the editor.

Note Do not rely on the step keys or the front panel knob to set parameters. Use
of step keys is not recommended because the results may depend on the
function’s step size, which may change as other parameters change.

Use HP-1IB Echo

HP-IB Echo is a useful analyzer feature that allows you to view the SCPI mnemonic or
mnemonics corresponding to any operation executed from the front panel. To turn on HP-IB
Echo, press (SYSTEM OPTIONS) HP-1B and HP-1B Echo ON off . After doing this you will see a
mnemonic appear in a dialogue box on the screen as you complete any key sequence that has a
matching SCPI mnemonic.

This is the exact mnemonic that is generated in your recorded program during a recording
session.

Using HP-IB Echo you can preview the SCPI mnemonic commands that will be stored in your
program before you actually record them. While this is not essential, it can be very useful
when you are in doubt as to what a particular key sequence will record, or precisely when a
key sequence corresponding to a mnemonic is completed.

2-8 Recording Programs

Running, Pausing and Stopping Programs

Program control — running, pausing and stopping an IBASIC program — can be managed
from the analyzer front panel using various hardkeys and softkeys. These actions and their
corresponding keys are described in this chapter.

A special case is an autostart program which runs automatically on power-up if it exists on the
analyzer’s built-in floppy disk drive or RAM disk.

IBASIC programs may also be remotely controlled via SCPI commands over the HP-IB. For
information on running, pausing and stopping programs from an external controller see
Chapter 8, “Interfacing with External Devices.”

Starting Programs Automatically

When the analyzer is powered up, it automatically searches first the internal non-volatile RAM
disk and then the built-in floppy disk drive for a program named AUTOST or AUTOST.BAS. When
an AUTOST program is found, it is automatically loaded and executed.

The AUTOST program can be used for anything from configuring the analyzer for specific
measurements, much like an internal instrument state Save/Recall register, to diagramming
measurement setups using graphics commands, as in a guided measurement sequence,

Refer to Chapter 4, “Saving and Recalling Programs,” for information on using the analyzer to
name programs before they are saved.

Running and Continuing a Program

To run an IBASIC program that is already in the analyzer program buffer, press the Run softkey

in the (SYSTEM OPTIONS) IBASIC menu. The RUN command can also be executed from an
external keyboard in either of two ways.

B Press the function key that corresponds to the Run softkey (see note below).

m Type RUN on a command line and press (Enter). A command line is always available when an
IBASIC display is partitioned. (See Chapter 5, “Developing Programs,” for information about
display partitions.) You can also activate a command line from an external keyboard with no
IBASIC displays partitioned by pressing the key on your external keyboard.

Running, Pausing and Stopping Programs 3-1

Note When an external keyboard is connected, its function keys through
always represent the analyzer’s eight softkeys. The analyzer’s hardkeys are
each represented by a combination of or and one of the function
keys. Refer to your analyzer’s User’s Guide for more information on the

external keyboard interface. The (SYSTEM OPTIONS) IBASIC menu can be
accessed from an external keyboard using + (for (SYSTEM OPTIONS))
and (for IBASIC). A keyboard template showing which keys to press for

specific analyzer functions was supplied with your analyzer. (HP part number
08712-80028.)

The RUN command is executed in two phases: prerun initialization and program execution.
The prerun initialization phase consists of:

m Reserving memory space for variables specified in COM (both labeled and blank), DIM, REAL
or INTEGER statements, or implied in the main program segment. Numeric variables are
initialized to 0; string variables are initialized to the null string.

Note Variables in COM are only initialized the first time a program is run.

m Checking for syntax errors that require more than one program line to detect. Included in
this are errors such as incorrect array references, and mismatched parameter or COM lines.

After prerun has been successfully completed, the program will begin the execution phase.
Program lines will be executed until one of the following events occurs:

1. An END or STOP statement is encountered in the program.
2. The hardkey is pressed to reset the instrument.
3. The Pause softkey is pressed to pause the program.

4. A PAUSE statement is encountered in the program.

Pausing a Program

When an IBASIC program is running on the analyzer a softkey menu is always available.

This “Program Running” menu has seven user-defined softkeys and a Pause softkey. Press

the Pause softkey to suspend execution of a program. Pause is the eighth softkey and is
represented by on an external keyboard.

The program can also be paused by inserting a PAUSE statement in the program. The
instrument responds as if you had pressed the Pause softkey. Refer to Chapter 5, “Developing

Programs,” to learn how to insert statements in your recorded program. Note that PAUSE is one
of the IBASIC keywords included in the editor’s label window (also described in Chapter 5).

3-2 Running, Pausing and Stopping Programs

To continue the program from a paused state, press the Continue softkey in the

(SYSTEM OPTIONS) IBASIC menu or on an external keyboard. This menu automatically
appears when a program is paused. Continuing a paused program resumes program operation
from where it was paused, retaining the current program context (variable values, etc).

Pausing a program does not close any files that have been opened by the program. You will not
be able to perform any of the following disk operations after pausing a program that has left a
file open on that medium:

RENAME FILE
DELETE FILE
DELETE ALL FILES
COPY FILES

COPY DISK
FORMAT DISK

To close all open files, you must complete the execution of the program or perform an IBASIC
RESET. This can be done by pressing the hardkey. The hardkey is represented
by + on an external keyboard. Keystroke recorded programs do not open files and
therefore avoid this problem.

Using LOCAL LOCKOUT 8 to Disable the Pause Key

The Pause key is always enabled when a program is first run and remains enabled, until a
LOCAL LOCKOUT 8 command is executed.

Example: Pause key locked-out from within a program.

10 !

20 LOCAL LOCKOUT 8
30 !

40 ...

Example: The Pause key can be re-enabled from within the program with the LOCAL 8
command at any time.

90 !

100 Re-enable_pause:
110 LOCAL 8

120 RETURN

130 !

The key can still be used to stop a program even if the LOCAL LOCKOUT 8 command has
been executed.

Running, Pausing and Stopping Programs 3-3

Stopping a Program

To stop a program completely, press the (PRESET) hardkey at any time while the program is
running. This causes an IBASIC RESET. Placing a STOP statement in your program will also
terminate the program, but does not perform an IBASIC RESET operation. The END statement
can also be used to stop program execution, but it must be the last line in the main program
segment.

The program remains in the program buffer after execution stops until it is cleared. To clear
the program buffer, press (SYSTEM OPTIONS) IBASIC Utilities Clear Program or turn off
the instrument.

For more information on the PAUSE and STOP statements see the “HP Instrument BASIC
Language Reference” section of the HP Instrument BASIC Users Handbook, contained in this
binder.

3-4 Running, Pausing and Stopping Programs

Saving and Recalling Programs

IBASIC programs can reside in memory, on disk, or in an external computer.

To transfer a program between the instrument’s buffer and a disk mass storage device, use the

SAVE RECALL) Programs menu. To access the (SAVE RECALL) Programs menu using an external
keyboard, use + (for (SAVE RECALL)) and (for Programs).

The GET, SAVE, LOAD, STORE, RE-STORE, and RE-SAVE commands can be used within a program
or from an IBASIC command line to transfer program files to and from mass storage. An
autoload feature also exists to allow for a program (named AUTOST or AUTOST .BAS) to be
automatically recalled from the internal non-volatile RAM disk or the built-in floppy disk and
run at power-up.

Another mode of program transfer is between the analyzer and an external controller, such

as an HP Series 200/300/700 controller. Using an external controller, you can combine the
convenience of keystroke recording in IBASIC with the ease of program editing in a dedicated
external workstation by recording the measurement sequence and then uploading the program
to the external controller for further editing. Fully developed programs may be downloaded
from an external controller as well. The methods of transferring programs between the
analyzer and an external controller are described in detail in Chapter 8, “Interfacing with
External Devices.”

This chapter describes all program transfer operations between the program buffer and the
analyzer’s internal non-volatile RAM disk, internal volatile RAM disk, and internal floppy disk
drive.

Selecting a Disk

When the Programs menu is selected the analyzer automatically catalogs the
selected disk or memory. The selected disk is one of the following mass storage devices:

® Jnternal Non-Volatile RAM Disk — Non-Vol RAM Disk
® Tnternal Volatile RAM Disk — Volatile RAM Disk
® Internal Floppy Disk Drive — Internal 3.5" Disk

To select a mass storage device press the Select Disk softkey in the menu.
Then press the key corresponding to your choice.

Saving and Recalling Programs 4-1

Saving a Program

To save the current contents of the analyzer’s program buffer to a file, press Save Program
in the Programs menu. If desired, specify the type of file, binary or ASCII, with
the File Type softkey; default is ASCIL. The program is saved to an ASCII file with a default

name on the currently selected mass storage device or disk. Each time the Save Program

key is used a new file is created. These files are named PROGO.BAS, PROG1.BAS, ... with the
number being changed for each new file. For portability, save files in ASCII. See “User-Created
Subprograms” in Chapter 9 for when it is necessary to save files in binary format.

DOS volume NVOL_RAM 92/01/21 10:28:32.00 Paget/1 Programs

MEM : \ Bytes Free: 48391

FILE NAME TYPE SIZE LAST CHANGE Save
L <PARENT> <DIR> Program
PROGO.BAS Dos 7873 21-0CT=91 10:37 Re—Save
STATEQ.STA Dos 13056 17-JAN=92 13:52 Program
TRANS.STA Dos 3328 189—JAN—92 08:14

_ _ . File Type
REFLS.STA Dos 3328 19—JAN-92 08:20 bin ASCI

Recall
Program

Save
AUTOST
IBASIC

Prior Menu

cpblb

Figure 4-1. The Screen

If you are re-saving a program — that is, saving a file to a disk that already contains the file
name — press Programs and use the arrow keys to highlight the name of the file

to be re-saved. Then press Re-Save Program and the file is saved. The disk is automatically
catalogued when the menu is selected.
The Re-Save Program softkey can also be used to save a new program with a non-default file

name. Press Re-Save Program . Enter the new program’s name using the external keyboard
or the internal label maker. If no file with that name exists on the disk a new file is created.

Use ASCII Format Whenever Possible

Whenever possible use ASCII as the file type for the following reasons:

m ASCII format is faster.

m Binary format is not compatible from one model of analyzer to another.
m HP BASIC cannot read a binary file from the analyzer.

m Binary format may not be supported in future releases of firmware or
analyzers.

4-2 Saving and Recalling Programs

AUTOST Programs

IBASIC allows you to designate a program to be automatically loaded and run when the
instrument is first powered up. To make an autoloading program save it with the file name
AUTOST on the internal floppy disk drive or internal non-volatile RAM disk. This can be

done from the Programs menu by pressing Save AUTOST or by using the
Re-Save Program softkey and entering the file name AUTOST.

When the analyzer is powered up, it automatically searches first the internal non-volatile RAM
disk and then the built-in floppy disk drive for a program named AUTOST or AUTOST.BAS. When
an AUTOST program is found, it is automatically loaded and executed.

Recalling a Program

To recall a program file from mass storage to the program buffer, use the
Programs menu to catalog the disk. Select the desired mass storage device or disk, use the

arrow keys to highlight the file and press Recall Program .

The recalled program file is entered into the program buffer one line at a time and checked
for syntax errors. Lines with syntax errors are commented out and the IBASIC syntax error is
displayed briefly in an error message and written to the CRT at the same time. To view error
messages logged to the CRT, use the (SYSTEM OPTIONS) IBASIC IBASIC Display menu to
allocate a screen partition for IBASIC.

Note Any program recalled to the program buffer using the Programs
menu will overwrite the current contents of the program buffer. Be sure to
save your current program before recalling another program from disk.

CAT to a String Array Exception

The analyzer’s treatment of CAT to a string array is not the standard as documented in the “HP
IBASIC Language Reference.” The difference is that if you send the catalog to a string array,
the array must contain at least 59 characters for a directory listing (rather than the standard of
80).

Saving and Recalling Programs 4-3

Developing Programs

For many applications, you can use keystroke recording to create and run programs without
needing to alter the program code that is generated. However, with some knowledge of

the IBASIC language and the program development capabilities of the analyzer, you can
significantly increase the power of your recorded programs or create your own programs from
the ground up.

This chapter describes the operation of the following keys in the (SYSTEM OPTIONS) IBASIC
menu, and any softkeys found in their underlying menus:

B Edit

W IBASIC Display

B Utilities

Edit places you in the editor where you can make changes to your program on a line-by-line
basis.

IBASIC Display menu allows you to select what part, if any, of the CRT display is available
for the use of IBASIC. An IBASIC display partition provides you with a command line you can
use to execute IBASIC commands from an external keyboard. It also provides an area for
viewing graphics and program output.

Utilities allows you to Clear Programs from the program buffer, allocate memory for
program use, or secure program lines.

Developing Programs 5-1

External Editors

In addition to using the built-in IBASIC editor, programs can be developed in the following
external environments.

m HP BASIC editors
m ASCII word processors

The external editing environments provide many advantages, the most notable being speed and
flexibility. Precautions must be taken when using ASCII word processors because they do not
provide the syntax checking available when using the internal editor.

After editing a program in an external environment, the best practice is to GET the program
from an IBASIC command line using the following procedure (instead of using the
keys described in Chapter 4).

1. Partition an IBASIC display (as described later in this chapter).

2. Use an external keyboard to enter the command GET "PR0OGO: ,4" (this command loads a
program file PROGO from the internal floppy disk drive).

3. Watch the IBASIC display as the program is loaded — syntax errors result in error messages
displayed on the screen.

4. Edit the program to correct any errors found.

HP BASIC

The HP BASIC editor checks for the syntax of the version of HP BASIC being used. Because
IBASIC is a subset of HP BASIC it may not find all of the errors — the most common error is the
use of HP BASIC commands that are not supported by IBASIC. For a listing of the commands
supported by IBASIC refer to Chapter 10, “IBASIC Keyword Summary”.

ASCII Word Processors

When an ASCII word processor is used to edit a program no syntax checking occurs until the
program is loaded by the instrument. Another complication with using a word processor is that
program line numbers are not automatically renumbered when new lines are inserted.

It is recommended that you renumber the program, as described later in this chapter, to reduce
the possibility of errors. Errors in numbering lines usually do not result in a syntax error, they
write over other program lines.

5.2 Developing Programs

Editing Your Program Using Edit

The built-in editor may be used for creating and altering lines in an IBASIC program. Those
familiar with the editor found in HP BASIC will find it somewhat similar to the instrument’s
IBASIC editor; others should find it easy to learn and use. This section tells you how to edit
and enter an IBASIC program.

To start the editor, press the Edit softkey in the (SYSTEM OPTIONS) IBASIC menu or on
an external keyboard. You will see the program appear on the display with a cursor on the
first line of the program, as shown in Figure 5-1. If the program buffer is empty, the first line
number 10 appears with the cursor positioned to begin entering text.

‘CALL‘PRINT‘ABORT SUB SUBEND DATA LOCAL DIM BIT ABCDEFGHIJKLM Edit

10 [

))) Insert
20 I This program measures the transmission and Line
30 I reflection characteristics of a bandpass filter
40 ! Insert
50 ASSICGN @Hp8711 TO 800 Char
60 ON KEY O LABEL "TRAN" CALL Transmission
70 ON KEY 1 LABEL "REFL" CALL Reflection Delete
80 CON KEY 3 LABEL "SETUP" CALL Setup_diag Line
90 ON KEY 5 LABEL "EXIT" GOTO End_prog

Recall

100 LOOP Line
110 DISP "WAITING FOR SELECTION"
120 END LOOP
130 End_prog:DISP Delete
140 END Char
150 !
160 SUB Transmission Enter

170 Transmission:!

180 QUTPUT @Hp&711: "CONF "FILT:TRAN""

190 OQUTPUT @HpS8714; "DISP:ANN:FREQL:MODE CSPAN"
200 QUTPUT @Hp8711; "SENS1:FREQ:CENT 175 MHZ"

Prior Menu

Figure 5-1. The HP IBASIC Program Editor

The analyzer editor is accompanied by a “Label Window” at the top of the screen. This
window is filled with characters and IBASIC keyword commands and has its own cursor.

The current program line (the line containing the cursor) always appears as two lines on the
screen, allowing you to enter up to 108 characters if needed. All other lines have only their
first 51 characters displayed (excluding line numbers).

Each line has a numeric field in the first 6 columns in which program line numbers are right
justified. Although program lines are automatically numbered by the editor, you can edit the
current line number to copy or move it to a different location in the program. The range of

line numbers is from 1 to 32767. To end an editing session press the Prior Menu softkey in
the edit menu or on an external keyboard. This will return you to the (SYSTEM OPTIONS)
IBASIC menu.

Developing Programs

53

The IBASIC Editor Softkeys

The editor has two sets of softkey menus, the Edit keys and the Character Entry keys. The
edit menu is activated when you press (SYSTEM OPTIONS) IBASIC Edit . The menu box above
the softkeys shows the label Edit.

The edit menu provides the following softkeys:

Insert Line (V)
Insert Char ()
Delete Line ()
Recall Line (@)
Delete Char (@)
Enter (Fe))

@
Prior Menu ()

The character entry menu is described in the “Editing from the Front Panel” section of this
chapter.

Recording into an Existing Program

One way to enter lines into your program is to use the keystroke recording capabilities of
IBASIC. To record measurement sequences or other front panel operations into your program
follow the procedure described below.

1. Activate the editor by pressing (SYSTEM OPTIONS) IBASIC Edit.

2. Use the step keys on the analyzer or the cursor keypad on an external keyboard to position
the cursor on the line above which you want the recorded statements inserted.

3. Press Prior Menu to exit the editor.

4. Press Key Record ON off to activate keystroke recording.

5. Record the measurement sequence or front panel operation.

6. Press (SYSTEM OPTIONS) IBASIC Key Record on OFF to conclude the recording session.

The inserted recording acts the same as if you had pressed Insert Lines in the editor, and
generated OUTPUT statements in insert mode.

Note The ASSIGN statement (for example, ASSIGN; @Hp8711 to 800) is not generated
when you are recording into an existing program and must be included in your
program prior to any recorded OUTPUT commands. If you initially created the
program using recording, this statement should already exist. If it does not
exist, you will need to enter it.

5.4 Developing Programs

Editing with an External Keyboard

With an external keyboard connected to the analyzer, it is easy to edit or create an IBASIC
program using the internal editor. Note that the Front Panel Editor described in the next
section is always available, even when an external keyboard is in use.

Note The analyzer and the IBASIC editor work with IBM PC-AT compatible
keyboards (US only) that have a mini-DIN interface. Non-US language
keyboards will not cause an error, they simply will not be recognized as
different from the US keyboard. A compatible keyboard can be purchased
by ordering option 1CL with the analyzer. Keyboards with a standard DIN
connector will need a mini-DIN to DIN adapter, HP part number 1252-4141.

The PC-AT keyboard, Figure 5-2, has four major key areas: the typewriter keypad, the numeric
keypad, the cursor keypad, and the function keys. Alphanumeric text can be entered using the
typewriter and numeric keypads as needed. The cursor keypad can be used to move the cursor
up/down a line or left/right to the next character positions. The function keys of the keyboard
map to the softkeys on the analyzer front panel.

FUNCTION KEYS

@6@@6@@6@5@65 | {@@ (Euna]
| (OO0 | -0 \‘ DDDD |
x l
x l

COO0OO0000000 e ‘FDDD
o JO I o) | ‘\ D@D
()) L @@“L@D

Figure 5-2. The PC Keyboard

Connect the keyboard to the rear panel DIN KEYBOARD connector of the analyzer with

the power off. Turn on the power and load the IBASIC program to be edited. Select the
(SYSTEM OPTIONS) IBASIC Edit menu and use the cursor keypad to position the cursor within
the program for editing operations. The Page Up and Page Down keys on the keyboard scroll
through the program quickly and easily.

Inserting Lines

Insert one or more program lines above an existing line by placing the cursor on that line and
pressing + on the keyboard. This key combination functions as a toggle to turn
insert mode on and off.

Developing Programs 5-5

As an example, assume you want to insert some lines between two adjacent program lines
numbered 90 and 100. Place line 100 in the current line position and press (Shift) + (Insert). The
program display “opens” and a new line, number 91, appears between line 90 and line 100.
Enter the inserted line and another inserted line, number 92, will appear. If, after continuing
to enter lines in this manner, the inserted line number increments to 100, then the current line
100 will be renumbered one higher to accommodate the inserted line.

To stop inserting lines either press (Shift) + again or use the cursor keys to move to
another program line. Make sure you have entered any changes to your final inserted line (with
the key) before exiting the insert mode. Remember any changes you have made to the
current line will be lost if you move the cursor to another line without pressing (Enter).

Editing Lines

Use the cursor keypad on the keyboard to move around the program for editing. The left and
right arrow keys move within a program line while the up and down arrow keys move between
lines. The alphanumeric keypad on the keyboard can be used for entering or editing text.
Another key that is useful is the (Delete) key, which deletes the character highlighted by the
CUrsor.

When you finish editing or changing a program line, store it into the program by pressing
on the keyboard. The computer checks the line for syntax errors and converts letter case to
the required form for names and keywords (IBASIC commands). If no errors are detected, it
then stores the line in the program buffer.

Entering Program Lines

When you finish entering or changing a program line, to store it into the program buffer you
must ENTER it in one of four ways:

1. Use the key on the front panel of the analyzer.

2. Use the Enter softkey on the instrument.

3. Use the or (Return) key on the external keyboard.

4. Use the function key on the keyboard ((Fe)) that represents the analyzer’s Enter softkey.

The computer checks the line for syntax errors and converts letter case to the required form
for names and keywords (IBASIC commands).

If no errors are detected, it then stores the line,

Note If you edit or enter text on the current program line and then move off the line
without pressing ENTER, all editing on the line will be lost.

Editing from the Front Panel

Use the step keys to move the cursor up and down the lines in the program. When the cursor
is located at the beginning of a line you want to change, use the knob to position the cursor
within the line.

5.6 Developing Programs

Character Entry

The character entry menu and the associated label window are activated by pressing the
Insert Line or Insert Char softkeys. The knob and step keys now move the cursor in the
label window.

Use the knob or step keys to move the label window’s cursor until it highlights the desired
letter or keyword and press Select Char/Word . Continue editing until the line is correct.

Press Enter . The computer checks the line for syntax and then stores it in the program if the

syntax is correct. Press Prior Menu to return to the edit menu.

The character entry menu provides the following softkeys:

Select Char/Word ((FL) Inserts the character or word highlighted by the label
window cursor at the position marked by the program
CUrsor.

Space () Inserts a space at the position marked by the program
CUrsor.

Delete Char () Deletes the character highlighted by the program cursor.

Backspace (@) Deletes the last character before the program cursor.

Enter () Enters the edited program line.

Prior Menu (@) Returns to the edit menu and de-activates the label
window.

The Label Window

The label window is a scrolling list of the most common characters, symbols and keywords used
in IBASIC programming. It contains the uppercase alphabet, the numbers 0 to 9, symbols such
as single and double quotation marks, parentheses, signs for mathematical and string operations
as well as numerous other characters and symbols.

It also contains the following IBASIC keywords:

ABORT ENTER NOT
ASSIGN FOR OUTPUT
BIT GOTO PAUSE
CALL IF PRINT
CLEAR INPUT SUB
DATA INTEGER SUBEND
DIM LIST THEN
DISP LOCAL TO

END NEXT WATT

Inserting Lines

To insert one or more program lines above any existing line, place the cursor on the existing
line and press Insert Line . This causes the cursor to move to a new line that appears above
the existing one. Enter and store the inserted line and another inserted line will appear.
Remember, each line must be ENTERed or any changes will be lost when the cursor is moved
to a different line.

Developing Programs 5-7

Removing Program Text

You can remove individual characters or entire lines from within the editor.

Deleting Characters

The Delete Char softkey removes the character under the cursor and moves all characters to
the left one place. Repeatedly pressing Delete Char will cause text to the right of the cursor

to be removed one character at a time. The Delete Char softkey functions the same in both
the line number and program statement fields. When used in the line number field, it deletes
only line numbers to the right of the cursor (not program statement characters).

When using an external keyboard there are other keys that perform the same function as the
Delete Char softkey. These are the key in the cursor keypad and the function key

that maps to the appropriate softkey, for the edit menu or for the character entry
menu.

Another way to remove text on a line is by backspacing. Pressing the hardkey or the
Backspace softkey on the front panel of the analyzer removes the letter to the left of the
cursor and moves the cursor (and all characters to the right of the cursor) one space to the left.
The function key or the key on the typewriter keypad of the external keyboard
perform the same function. When the cursor is on a line number, using backspace simply
moves the cursor back one position without deleting the number.

Deleting Lines

The Delete Line softkey allows you to remove the current program line. When the current
program line disappears, all subsequent lines in the display move up one line, but are not
renumbered. The cursor maintains its column-relative position on the next highest numbered
line,

If Delete Line is pressed when the cursor is on the last program line, the line text is removed
but the line number remains with the cursor resting in the first column of line. This puts the
editor in insert mode on the last line of the program (see “Inserting Lines”). (To get out of
insert mode, simply move the cursor up one line.)

Pressing Delete Line will NOT remove a subprogram line with the SUB keyword in it unless
all program lines belonging to that subprogram have already been deleted. A block of program
lines can be deleted by executing the command DELETE x,y from an IBASIC command line
(where x is the first line number in the block and y is the last line number).

When using an external keyboard there are other keys that perform the same function as the
Delete Line softkey. These are (Shift) + in the cursor keypad and the function key

((F3)) that maps to the Delete Line softkey in the edit menu.
Recalling a Deleted Line

The last line that was deleted using Delete Line is buffered in the analyzer. To recall this line

press the Recall Line softkey or on an external keyboard. Press Enter to restore the
line to the program.

5.8 Developing Programs

Renumbering, Copying, Moving, and Indenting Lines

If you want to change the line number of an edited program line, simply move the cursor to the
line number field and enter the line number you want. Changing the line number causes a copy
operation, not a move. Therefore, if you only want to move the line, change the line number

first, press Enter and then delete the original line. If you want to create an edited copy of the

current line, edit the line and then change the line number and press Enter . The edits will
only appear in the copied line,

If you are inserting a program line and you change the line number, the line will move to its
new location when you ENTER it. The editor will remain in insert mode at the new location in
the program.

You will notice that when the cursor is in the line number field, entries operate in an overtype
fashion rather than in the insert fashion as in the text portion of the program line. Also the
(backspace) key simply moves the cursor over line numbers without deleting the number.

Note To renumber the entire program, IBASIC supports the RENumber command
BUT you need an external keyboard to execute it. The command can be
executed by following the steps listed below.

1. EXIT the edit mode by pressing Prior Menu until the (SYSTEM OPTIONS)

IBASIC menu is active.

2. Partition an IBASIC display as described next in this chapter.

3. Enter the command REN x,y (where x is the new beginning line number and
y is the increment) from the command line of the IBASIC display.

4. Another way to “renumber” program lines with an external keyboard is to
use the COPYLINES and MOVELINES commands. Use the INDENT command
to make your code more readable.

Using IBASIC Display

Pressing the (SYSTEM OPTIONS) IBASIC IBASIC Display softkey ((F7) on an external keyboard)
allows you to allocate a partition of the analyzer’s display to be used by your program or,
alternately, to return any allocated partition to the analyzer.

The analyzer display is divided into two small partition areas (Upper and Lower) or one large
area (Full), which encompasses both the Upper and Lower partition areas.

All screen output commands, such as PRINT and DRAW, require that you allocate a partition
of the screen in order to view the results of the command. This can be performed in your

program or interactively using the IBASIC Display softkey. Allocating display partitions
can be accomplished from within your program using the SCPI mnemonic "DISP:PROG" and
specifying the parameter UPPER, LOWER or FULL. For example the statement

OUTPUT 800;"DISP:PROG FULL"

allocates the entire display, corresponding to selecting Full from the IBASIC Display menu.

Developing Programs 5-9

An IBASIC display partition cannot occupy the same location as a measurement channel
display. When an IBASIC display is partitioned it limits the amount of the CRT available to
simultaneously show measurement data. Table 5-1 shows the IBASIC Display menu softkeys,
their corresponding SCPI mnemonics, their functions and the measurement data that can be
viewed when the display partition is allocated.

Table 5-1. IBASIC Display Partitions

SOFTKEY SCPI MNEMONIC ALLOCATES VISIBLE DATA
None DISPlay:PROGram OFF No Display Measurement
Channels 1 and 2
Full DISPlay:PROGram FULL The Whole Display None
Upper DISPlay:PROGram UPPer |Upper Measurement Measurement Channel
Channel Area 2 only
Lower DISPlay:PROGram LOWer |Lower Measurement Measurement Channel
Channel Area 1 only
Note When the UPPER or LOWER display partition is selected, the measurement

display automatically selects the “split-screen” format. This format uses

half of the CRT to display each measurement channel’s measurement data.
Measurement channel 1 data is always shown on the upper half of the screen,
and measurement channel 2 data is shown on the lower half. The split-screen
format allows measurement data to be viewed simultaneously with IBASIC
program output. For more information about the split-screen format, or other
parts of the measurement display, refer to your analyzer’s User’s Guide.

Most display allocation should be handled by your program via the SCPI mnemonics. These
softkeys are best utilized during program development.

An IBASIC partition can be very useful during program development. It can be used to view
program output, to query variables and to execute IBASIC commands (such as GET and REN)
outside of your program. Figure 5-3 shows the relative size and location of the different IBASIC
partitions and their command and display lines.

5.10 Developing Programs

UPFER partition

FULL partition \Display line .

Command line

LOWER partition
[Display line [Display line
Command line Command line

Figure 5-3. The IBASIC Display Partitions

More information about using display partitions within a program is available in Chapter 7,
“Graphics and Display Techniques.”

Developing Programs 5-11

Using Utilities

Pressing the IBASIC Utilities softkey (F6 on an external keyboard) allows
you to clear the program buffer, allocate memory for program use, or secure your program.
m Clear Program (I'1)

m Memory Size (F2)

m Secure (F3)

Executing the Clear Program erases the current program buffer and frees all memory
currently allocated. Memory size (see below) is reset to 8192 bytes. You will be prompted to
ensure you do not accidentally erase the program.

Memory Size allows you to set stack memory to be used by your program. At power up it

is set by default to 8192 bytes. However, when a program is (RUN), the analyzer will try to
automatically set the Memory Size large enough to accommodate the program’s Stack and COM
memory requirements.

For some programs the automatic memory sizing will be too small and you will get the message:

Error 2 in 100 Memory overflow

When this error occurs, you must manually set the Memory Size to the value in bytes required
by your program, up to the available memory in your system.

Note The total amount of memory available for IBASIC and VolRAMdisk may change
from firmware revision to revision. To determine the current available memory,
press Select Disk Configure VOL RAM. A memory report will
appear on the analyzer’s display.

Secure is used to secure lines of your program. Secured lines cannot be listed, edited, or
displayed. After you press this key you will see:

m Start Line # (softkey 1)
m End Line # (softkey 2)

m Perform Secure (softkey 4)

After you have set the start and stop line numbers, execute the Perform Secure operation.

Caution Once you have secured your program lines, there is no way to remove the
security. Therefore, do not secure the only copy of your program. Make a copy
of your original program, Secure the copy, and keep the original in a safe
place. This prevents unauthorized users from listing your program.

5.12 Developing Programs

Debugging Programs

The process of creating programs usually involves correcting errors. You can minimize these
errors by using keystroke recording for measurements and other front panel sequences and by
writing structured, well-designed programs.

Of course bugs can and do appear in even the best designed programs and IBASIC contains
some features that can help you to track them down. Some IBASIC capabilities useful

for program debugging are simple and, used properly, can be very helpful. Some of these
capabilities are:

m RUN or CONTINUE your program
m STEP through your program, executing one line at a time
m Display the last error encountered in your program

m Examine program variables

By examining the values assigned to variables at various places in the program, you can get a
much better idea of what is really happening in your program.

By inserting a PAUSE statement in your program you can pause the program at any line
and then examine the values of variables at that point in the program. You can then press
Continue in the (SYSTEM OPTIONS) IBASIC menu to resume operation to the next PAUSE
statement (or the program end).

These capabilities can be used together to effectively examine the program’s operation and
solve your particular problems.

Note Most of the debugging techniques described in this chapter make use of an
external keyboard. The analyzer and the IBASIC editor work with IBM PC-AT
compatible keyboards (US only) that have a mini-DIN interface. Non-US
language keyboards will not cause an error, they simply will not be recognized
as different from the US keyboard. A compatible keyboard can be purchased
by ordering option 1CL with the analyzer. Keyboards with a standard DIN
connector will need a mini-DIN to DIN adapter, HP part number 1252-4141.

Debugging Programs 6-1

Setting Breakpoints

A common method of debugging a program involves the use of breakpoints. A breakpoint
causes the program to stop before executing a specified line so that you can examine the
program state at that point. In IBASIC this can be accomplished by inserting PAUSE statements
in the program code. Note that PAUSE is one of the IBASIC keywords included in the editor’s
label window (described in Chapter 5, “Developing Programs”). When the program is then run,
you can use the command line to check or change variable values.

Execution of the program can be resumed in one of two ways.

B Press Step ((F3) on an external keyboard) to execute next program line.

® Press Continue ((F2) on an external keyboard) to continue the program until the next PAUSE,
STOP or END statement is encountered.

Examining Variables

To examine a variable it is necessary to pause the program. Pausing the program can be
accomplished by pressing the Pause softkey ((F8) on an external keyboard) that is available
when a program is running, or by inserting a PAUSE statement in your program.

A command line becomes active when an IBASIC program is paused or stopped and an IBASIC
display partition is present. (For information on creating an IBASIC display partition, see
“Using IBASIC Display” in Chapter 5, “Developing Programs.”) You may also activate the
command line when no IBASIC window is partitioned by pressing the key on the external
keyboard. A cursor will appear in the lower left portion of the screen when the command line
is active. Strike the (ESC) key again to de-activate. Once the command line is active, a variable
can be examined in two ways. Both methods require the use of an external keyboard.

1. Enter the variable name (without a line number) on the command line. This results in the
value assigned to that variable being shown in the display line of the IBASIC window.

2. Execute the command PRINT Value from the command line (where Value is the name of
the variable being examined). This results in the value assigned to that variable being shown
on the print screen of the IBASIC window.

To examine a variable without accessing a command line it is necessary to add the statement
PRINT Value (or DISP Value) to the program before the PAUSE statement that temporarily stops
the program. PAUSE, PRINT and DISP are all keywords that are included in the IBASIC editor’s
label window (see Chapter 5, “Developing Programs” for a description of the label window).

Note An IBASIC display partition must be active to view the results of a PRINT
statement or to access a command line. The display line (accessed with the
DISP command) is available even when no IBASIC display is present.

6-2 Debugging Programs

Examining Strings

Enter string variables as you would any other variable. Any string variable entered without
delimiters will display as much of the string as will fit on the display line of the screen (up to
58 characters).

To select only a section of a string, use the IBASIC substring syntax (see the “HP Instrument
BASIC Programming Techniques” section of the HP Instrument BASIC Users Handbook). For
example, to examine the 7 character substring starting at the second character of A$ enter
A$[2;7] on the command line or execute the command PRINT A$[2;7].

Examining Arrays

To select an array to be examined you can either select individual elements or the entire array.
For example the entry:

I_array(1),I_array(2),I_array(3)
selects the elements 1 through 3 of the array I_array to be displayed.

You may select an entire array to be examined by entering the array variable name and
specifying a wildcard (*) for the element (such as I_array(*)). If I_array(20) is an integer
array, and the first and second elements are set to 100, entering I_array (*) would display:

100 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O

Individual array elements (e.g., I_array(17)) can also be specified in the same way as any other
single variable.

Debugging Programs 6-3

Displaying the Last Error Encountered

It is sometimes useful to review the last error encountered by a program that is being run. This
is done from the command line by examining the value assigned to the variable name ERRM$.
This value will include the error number and message of the last error encountered by the
program.

An additional method of displaying the error message is to use an error trapping subroutine.
For example, insert the following line at the beginning of a program.
ON ERROR GOSUB Errormsg

The subroutine Errormsg should then be included at the end of the program (after execution is
stopped but before the END command).

100 Errormsg: !
110 DISP ERRM$
120 PAUSE

130 RETURN

The error message is automatically shown on the display line of the IBASIC window and
program execution is paused when an error message is encountered.

You may also encounter SCPI errors, in addition to IBASIC errors. SCPI errors can occur when
using the OUTPUT command to control the analyzer, when a command syntax is unrecognized
or incorrect. For more details on SCPI errors, refer to the Programmer’s Guide.

6-4 Debugging Programs

Graphics and Display Techniques

The analyzer has two measurement channels which can be displayed simultaneously. The
instrument’s screen can be split into two trace areas for this purpose (upper for measurement
channel 1 and lower for measurement channel 2). Additionally, the two measurements can

be overlaid onto one full size screen (the default setting). For more information, refer to
“Automating Measurements” in the User’s Guide.

IBASIC programs have the ability to allocate portions of the instrument’s display for program
output, including text and graphics. This section provides a description of the various
programming techniques used to do both. Any of the three measurement display areas, called
display partitions, can be used by an IBASIC program. These partitions are shown in Figure 7-1.

»Chan 1:Transmission Log Mag 10.0 dB/ Ref 0.00 dB »Chan 1:Transmission Log Mag 10.0 dB/ Ref 0.00 dB
bohan 2:Reflection Log Mag 5.0 dB/ Ref 0.00 dB

)
Center 175.000 MHz Span 300,000 MHz
n 2:Reflection Log Mag 5.0 dB/ _Ref 0.00 dB

A
53
v
S
E
g

@
3

4
>

N

s [P

Center 175.000 MHz Span 300.000 MHz Center 175.000 MHz Span 300,000 MHz

Figure 7-1. Display Partitions on the Analyzer

Using the Display Partitions

Many IBASIC commands (such as PRINT, DISP, CLEAR SCREEN, MOVE, DRAW and GCLEAR) require
a display as an output device. These commands output data to the screen by writing to a
screen buffer. Since IBASIC programs share all the hardware resources with the instrument,
the display must be shared for instrument and program use.

Graphics and Display Techniques 7-1

In order to view this output buffer, a portion of the display must be released from the
instrument. When no program is running, you can do this manually, using the (SYSTEM OPTIONS)
IBASIC IBASIC Display softkey menu. To do this within a running program requires sending

a command to the analyzer both to borrow a part of the display and again to return it for the
instrument’s use.

This process is called the allocation of display partitions. Manual allocation of display partitions
is described in Chapter 5, “Developing Programs.” Table 7-1 below includes a summary of the
available partitions, their locations and the SCPI mnemonic used to select each partition.

Table 7-1. IBASIC Display Partitions

SOFTKEY SCPI MNEMONIC ALLOCATES
None ((FL)) DISPlay:PROGram OFF No Display
Full ((F2)) DISPlay:PROGram FULL The Whole Display
Upper ((F3)) DISPlay:PROGram UPPer Upper Measurement
Channel Area
Lower ((F4)) DISPlay:PROGram LOWer Lower Measurement
Channel Area

Allocating Display Partitions

To request a display partition from the analyzer for use by an IBASIC program, send the
instrument the corresponding SCPI mnemonic. "DISP:PROG UPPer" allocates the upper
partition, "DISP:PROG LOWer" allocates the lower partition, and "DISP:PR0OG FULL" allocates
the full screen partition.

For example, to print a message to the upper partition area, you might use a program segment
like this:

30 ASSIGN @Hp8711 TO 800

40 O0OUTPUT @Hp8711;"DISP:PROG UPPer"
50 CLEAR SCREEN

60 PRINT "This is the upper partition"

To be sure that you are not writing to a partition that has not yet been assigned, you should
include a WAIT statement or, even better, add a SCPI query command followed by an ENTER
statement to synchronize the program with the instrument. The previous example might then
look like this:

30 ASSIGN @Hp8711 TO 800

40 OUTPUT @Hp8711;"DISP:PROG UPPer"
42 OUTPUT @Hp8711;"DISP:PROG?"

44 ENTER @Hp8711;Screen$

46 IF Screen$<>"UPP" THEN GOTO 42

50 CLEAR SCREEN

60 PRINT "This is the upper partition"

The mnemonic DISP:PROG? (line 42 above) requests the instrument to send the current
partition status. The ENTER statement on the next line reads that status and then continues.

7-2 Graphics and Display Techniques

De-Allocating Display Partitions

To return the display partition to the analyzer for use as a measurement screen, use the
"DISP:PROG OFF" mnemonic. This should be done before the termination of any program that
has allocated a display partition. It may also be required within the program to allow the user
to view instrument measurement data. The following example demonstrates this command:

830 OUTPUT @Hp8711;"DISP:PROG OFF"

Operation with No Display Partition

IBASIC programs can also access the analyzer’s display when no partition has been allocated.
This can be done through the use of certain areas of the screen. One of these areas is to the
right of the measurement display. This area is reserved for softkey labels. It can be accessed
using the ON KEY statement.

A second area is a display line (or command line) that appears when no part of the display

is allocated for use by IBASIC. This display line, which is located at the lower left corner of
the active channel graticule, appears when needed by the INPUT or DISP commands or when
activated. To activate the command line, press (ESC) on an external keyboard. Figure 7-2
shows an example of the use of this display line. When the INPUT command is being used, the
IBASIC editor’s label window and character entry softkey menu appear. Refer to Chapter 5,
“Developing Programs,” for a description of the IBASIC editor.

[ABCDEFGHI JKLMNOPQRSTUVWXYZ0123456780 /*=<>(}&"" ', /?;: []]
2 »Chan 2:Reflection Log Mag 10.0 dB/ Ref 0.00 dB
Chi:Mkri1 1%5.760 MHz
dB -0.59 dB
ch2 i
1 Chz:Mkri1 175.760 MHz
+1200.00 dB

N
] |
AR |
7 i gl

oo !

=70

-80
Abs

Enter|Start| Fregliency |(MHz):

Start 0.300 MHz Stop 1 300.000 MHz

Figure 7-2. Using INPUT with No Display Partition

In addition to the commands described above, the analyzer has “User Graphics” commands
that can write to any of the display partitions. These commands can be used to write to

Graphics and Display Techniques 7-3

measurement windows as well as the IBASIC window. These commands are described in the
“SCPT Graphics Commands” section of this chapter.

Displaying Text

Most of IBASIC’s text capabilities are covered in detail in the “HP Instrument BASIC
Programming Techniques” section of the HP Instrument BASIC Users Handbook. The PRINT
statement works the same way in every display partition. Information is printed starting at the
top left corner of the current partition and continues until the display line of the partition is
reached. The screen then scrolls up to allow additional lines to be printed. Figure 7-3 shows
the different display partitions and the location of text printed to them. Note that causing the
screen to scroll does not affect any graphics displayed on the screen, since text and graphics
are written to different planes of the display.

All partitions have a width of 58 characters. The height varies according to partition. Both
upper and lower partitions contain 10 lines, while the full partition contains 22 lines.

This information is useful if you are using the PRINT TABXY statement to position text. For
example, the following program segment prints a message in the center of the full partition
(assuming it has been allocated earlier in the program).

100 Maxlines=22
110 Tabx=(58-LEN("This is CENTERED text."))/2
120 PRINT TABXY(Tabx,Maxlines/2);"This is CENTERED text."

(1.1) (58,1)

This is CENTERED text.

(1.22) (58.22)

Figure 7-3. Printing to a Display Partition

A useful technique to get text onto the screen quickly is to write your display message to a
long string using the OUTPUT statement, and then print the string to the screen. For large

7-4 Graphics and Display Techniques

amounts of text, this speeds up screen display time considerably. The following program
segment demonstrates this:

60 DIM Temp$[100],Big$[2000]

70 OUTPUT Temp$;"This is the first line of text"
80 Big$=Big$&Temp$

90 OUTPUT Temp$;"This is the second line of text"
100 Big$=Big$&Temp$

110 PRINTER IS CRT; WIDTH 2000

120 PRINT Big$

The OUTPUT statements in this example are used to copy each line of the message into the
variable Temp$ and append a carriage return.

You can also print to the screen using the OUTPUT statement in conjunction with the display
address (1). For example, line 150 below writes a string to the screen.

150 OQUTPUT CRT;"OUTPUT 1 WORKS WELL TOOQ"

Pop-up Message Windows and Custom Annotations

From your IBASIC program, you can replace instrument annotations with user-defined
annotations. You can change the X-axis labels and measurement channel annotations to
customize the display. Pop-up messages may also be used to display permanent or temporary
messages. Refer to “Automating Measurements” in the User’s Guide.

Graphics Initialization and Scaling

In all partitions, display coordinate 0,0 is at the bottom left corner and clipping occurs
automatically if the X,Y coordinate exceeds the displayable range of the current partition.
Figure 7-4 shows the different partitions and the pixel dimensions (GESCAPE values) for each.

After a GINIT command, the display is dimensioned as 100 GDU’s (Graphical Display Units)
high and 122 GDU’s wide (assuming full partition). This gives a RATIO result of 1.22 and
provides the same results as issuing a WINDOW 0,122,0,100 command. In order to prevent
circles from appearing oval shape, this ratio should be maintained. You can also issue a
WINDOW 0,537,0,439 command. This will maintain the same ratio but the display will now
be dimensioned in actual pixel units. This may be more useful than the default GINIT values
since fractional display units are not needed, allowing integers only to be used; thus speeding
execution. These are also the same values that are returned by utilizing the GESCAPE
command (see BARCODE program example). The GESCAPE command will always set the
current pixel dimension sizes. Because the results of this command can vary drastically with
partition size, you must first partition the display BEFORE executing the GINIT and GESCAPE
commands.

Note Upon power up, the default display coordinates are 0,537,0,439 and will remain
that until a GINIT is performed. It is recommended that a GINIT command
always be part of any graphics program and that it be executed only after the
display partition is set.

Graphics and Display Techniques 7-5

(0,439) (537,439) (0,199) (537,199)
IBASIC UPPER display partition

(0,0 (537,0)

IBASIC FULL display partition

{0,197) (537,197)

IBASIC LOWER display partition

(0,0) (537,0) (0.0) (537.0)

hp6ic

Figure 7-4. Pixel Dimensions with Available Display Partitions

Using Graphics

IBASIC’s graphics commands are easy to understand and use. You can use the MOVE statement
to move the “pen” to a specific pixel location (without drawing) and then draw a line from
the current pen location to another pixel coordinate using the DRAW statement. The GCLEAR
statement removes all graphics.

The PEN command provides an easy method of erasing lines drawn by the DRAW command.
When PEN 1 is issued (the default state), all DRAW commands act normally, drawing a line

with the full intensity. When PEN O is issued, all DRAW commands erase any pixels their path
encounters. Where there are no lines in the path, no change is visible. As an example of using
the MOVE and DRAW commands, the following statement moves the logical pen to a point 100
units to the right of, and 150 units above, the lower left corner of the display:

100 MOVE 100,150
This statement then draws a line to coordinates (200,10):
110 DRAW 200,10
Finally, these two statements erase the previously drawn line:

120 PEN O
130 DRAW 100,150

Although text and graphics appear together, you can clear them separately. Use CLEAR SCREEN
to clear the text. Use GCLEAR to clear the graphics.

7-6 Graphics and Display Techniques

Drawing Figures

Some IBASIC keywords listed below may be used to simplify drawings and setup diagrams. See
also, the section titled “Graphics Exceptions,” later in this chapter.

POLYGON - Draws all or part of a regular polygon
RECTANGLE - Draws a rectangle

LABEL - Produces alphanumeric labels

CSIZE - Sets size and aspect ratio of labels

LDIR - Defines the angle at which a label is to be drawn
LORG - Defines the relative origin of a label

These keywords are used in the “BARCODE” program example listed in Chapter 11, “Example
Programs”, and on the IBASIC Example Programs Disk. The keywords appear in the
subprograms ‘Box’, ‘Circle’, and ‘Label’ described below.

1700 Box:SUB Box(Xpos,Ypos,Xsize,VYsize)

1710 COM /Scale/ Sc,INTEGER X,Y

1720 MOVE X+(Xpos-Xsize/2)*Sc,Y+(Ypos-Ysize/2)*Sc
1730 RECTANGLE Xsize*Sc,Ysize*Sc
1740 SUBEND

1750 !

1760 Circle:SUB Circle(Xpos,Ypos,Radius)
1770 COM /Scale/ Sc,INTEGER X,Y

1780 MOVE X+Xpos*Sc,Y+Ypos*Sc

1790 POLYGON Radius*Sc,16,16

1800 SUBEND

1810 !

1820 Connect:SUB Connect(X1,Y1,X2,Y2,How)
1830 COM /Scale/ Sc,INTEGER X,Y

1840 MOVE X+X1%3c,Y+Y1%xSc

1850 SELECT How

1860 CASE 1 !...diagonal

1870 DRAW X+X2x3c,Y+Y2*Sc

1880 CASE O

1890 DRAW X+X1x3c,Y+Y2*Sc

19200 DRAW X+X2x3c,Y+Y2*Sc

1910 CASE -1

1920 DRAW X+X2x3c,Y+Y1*xSc

1930 DRAW X+X2x3c,Y+Y2*Sc

1940 END SELECT

1950 SUBEND

1960 !

1970 Label:SUB Label(Text$,Xpos,Ypos,Size,Lorg,Ldr,Pen)
1980 COM /Scale/ Sc,INTEGER X,Y

1990 LORG Lorg

2000 LDIR Ldr

2010 CSIZE Sizex3c, .55

2020 MOVE X+Xpos*Sc,Y+Ypos*Sc

2030 PEN Pen

2040 LABEL Text$

2050 PEN 1

2060 SUBEND

2070 !

Graphics and Display Techniques 7-7

The following program displays a “HELP” screen and demonstrates many of the techniques
discussed so far. Running this program produces the screen display shown in Figure 7-5.

10 DIM A$[58],String$[1000]

20 ASSIGN @Hp8711 TO 800

30 OUTPUT @Hp8711;"DISP:PROG FULL;*WAI"

40 GINIT

50 GCLEAR

60 MOVE 0,89

70 RECTANGLE 200,14

80 PRINT TABXY(24,2);"HELP"

90 OUTPUT A$;"This program demonstrates how to print several"

100 String$=String$&A$

110 OUTPUT A$;"lines of text at one time. This method
offers"

120 String$=String$&A$

130 OUTPUT A$;"the fastest possible print speed."

140 String$=String$&A$

150 PRINTER IS CRT;WIDTH 1000 ! Prevent auto cr/1lf
160 PRINT TABXY(1,5);String$

170 END

HELP

This program demonstrates how to print several
lines of text at one time. This method offers
the fastest possible print speed.

pd62a

Figure 7-5. “HELP” Program Output

7-8 Graphics and Display Techniques

Graphics Exceptions

The following graphics commands do not conform to the keyword description found in the
HP Instrument BASIC Users Handbook:

VIEWPORT - Does not create isotropic units that are physically square. Does not soft clip the
display area.

CLIP - The analyzer does not support graphics clipping.
SHOW - Does not create isotropic units.

POLYLINE, POLYGON, RECTANGLE, RPLOT - The analyzer does not support the FILL or
EDGE options. Also see next paragraph.

LINE TYPE - The analyzer does not support different line types.

GRID, RECTANGLE, POLYGON, and POLYLINE scaling differences

When the display is initialized using GINIT, the display will be scaled to a height of 100 GDU’s
and a width of 122 GDU'’s.

The ratio is 1.22 and the pixel height-to-width ratio is fixed at 1.0 (square pixels).

Note When converting programs from previous models (such as HP 8711A/B and
family) to run on an HP 8711C/12C/13C/14C or HP 8730A, scaling differences
will affect all graphics commands. The “C” family of network analyzers as well
as the HP 8730A tuner analyzer have square pixels. The older “A” and“B”
family network analyzers had a non-square pixel height-to-width ratio of 1.79.

Labeling with Different Partitions

The LABEL command may be used to label graphs, however, the following should be noted.
Labels that may be of the correct size for a full screen partition will appear half as big if a
GINIT is performed after the analyzer has been set to either the upper or lower half partition.
This is because the CSIZE command scales according to display height, not width. Since the
display height is one-half, the character size will also be one-half. Labels that are scaled
properly for full screen displays will not be scaled properly for half screen displays and
vice-versa.

Graphics and Display Techniques 7-9

SCPI Graphics Commands

In addition to the commands described earlier in this chapter, there are several SCPI
mnemonics that can be used to create graphics and messages on the display of the analyzer.

These commands are instrument specific mnemonics, not standard IBASIC commands. They
are also different from the previously described IBASIC commands in that they do not require
an IBASIC display partition. This means that they can be used to write or draw directly to a
measurement window.

These commands, listed in Table 7-2 are SCPI mnemonics and are programmable from an
external controller as well as from IBASIC. The commands are of the form

DISPlay:WINDow[1|2]10] :GRAPhics:<command>.

The number specified in the WINDow part of the command selects where the graphics are to be
written.

WINDowl draws the graphics to the channel 1 measurement window.
WINDow2 draws the graphics to the channel 2 measurement window.
WINDow10 draws the graphics to an IBASIC display partition.

Tip When SCPI graphics commands are used to write directly to a measurement
window they write to the static graphics plane (the same plane where the
graticule is drawn). There is no sweep-to-sweep speed penalty once the
graphics have been drawn.

7-10 Graphics and Display Techniques

Table 7-2. SCPI Graphics Commands

SCPI COMMAND FORM DESCRIPTION
DISPlay:WINDow[1|2]10] :GRAPhics command |Draw a circle of the specified Y-axis
:CIRCle <radius> only radius centered at the current pen

location — radius is in pixels.
DISPlay:WINDow[1|2]10] :GRAPhics command | Clear the user graphics and graphics
:CLEar only buffer for the specified window.
DISPlay:WINDow[1|2]10] :GRAPhics NR1 Set the color of the user graphics pen —
:CO0Lor <num> choose from O for erase, 1 for bright,
and 2 for dim.
DISPlay:WINDow[1|2]10] :GRAPhics command |Draw a line from the current pen
[:DRAW] <x>,<y> only position to the specified new pen
position — x and y are the new absolute
X and Y coordinates in pixels.
DISPlay:WINDow[1|2]10] :GRAPhics command |Draw a label with the lower left corner
:LABel <string> only at the current pen location.
DISPlay:WINDow[1|2]10] :GRAPhics CHAR Select the user graphics label font —
:LABel:FONT choose from SMAL1 |HSMall | NORMal |
HNORmal |BOLD | HBOLd | SLANt |HSLant.
DISPlay:WINDow[1|2]10] :GRAPhics NR1,NR1 Move the pen to the specified new pen
:MOVE <x>,<y> position — x and y are the new absolute
X and Y coordinates in pixels.
DISPlay:WINDow[1|2]10] :GRAPhics command |Draw a rectangle of the specified size
:RECTangle <xsize>,<ysize> only with lower left corner at the current

pen position — xsize and ysize are the
width and height in pixels.

DISPlay:WINDow[1|2]10] :GRAPhics
:SCALe <xmin>,<xmax>,<ymin>,<ymax>

Specifies a new coordinate system for
the specified window. Subsequent
graphics commands will use these new
coordinates. This command may be
useful for converting older programs to
work on your analyzer. (See “Graphics
Exceptions,” earlier in this chapter.)

For more information about the analyzer’s user graphics commands, refer to Chapter 7 of the
Programmer’s Guide. Refer also to the example program titled “GRAPHICS” in Chapter 8 of

the Programmer’s Guide.

Graphics and Display Techniques 7-11

Interfacing with External Devices

This section describes the techniques necessary for programming the HP-IB interface. It
describes how this interface works and how to use it to control or interface with systems
containing various HP-IB devices. It also describes how to interface with external devices using
the serial and parallel interfaces.

The HP-IB interface is Hewlett-Packard’s implementation of the ITEEE-488.2 Digital Interface
for Programmable Instrumentation. The acronym HP-IB stands for “Hewlett-Packard Interface
Bus,” and is often referred to as the “bus.” The interface is easy to use and allows great
flexibility in communicating data and control information between an HP Instrument BASIC
program and external devices.

IBASIC is an HP-IB instrument controller residing inside an instrument. It uses the instrument’s
HP-IB interface for external communication and an internal HP-IB interface to communicate
with the instrument. This unique arrangement presents a few differences between IBASIC’s
implementation of HP-IB control and HP BASIC controllers. A description of the interaction

of IBASIC with the host instrument and the external HP-IB interface is given in the section
entitled “The IBASIC HP-IB Model”, later in this chapter.

Communication with Devices

HP-1IB Device Selectors

Since the HP-IB allows several devices to be interconnected, each device must be uniquely
identified. Specifying the select code of the HP-IB interface (such as 7 or 8) to which a device
is connected is not enough to uniquely identify each specific device on the bus.

Each device on the bus has a primary address that identifies it. This address can be set by the
user. It must be unique to allow individual access of each device. When a particular HP-IB
device is to be accessed, it must be identified with both its interface select code and its bus
address.

The interface select code is the first part of an HP-IB device selector. IBASIC programs run
inside an instrument and communicate with it over an internal bus (interface select code 8).
IBASIC programs can also communicate with external devices using the instrument’s HP-IB
interface (select code 7).

The second part of an HP-IB device selector is the device’s primary address, an integer in the
range of 0 through 30. For example, to specify the device on the interface at select code 7 with
a primary address of 22, use device selector 722. Secondary HP-IB addressing is also supported
for those devices requiring it. These devices will have at least 5-digit service selection such as
72201.

Interfacing with External Devices 8-1

Since the analyzer is the only device on the internal interface, its primary address on that
interface is arbitrary and the instrument will respond to any primary address with a select code
equal to 8 (e.g., 800, 811, 822, etc.).

Note Each device’s address must be unique. The analyzer is shipped from the
factory with a primary address of 16. No other device on the bus should use
the same address.

The procedure for setting the address of an HP-IB device is given in the
installation manual for each device. To set the address of the analyzer, use
the softkeys in the (SYSTEM OPTIONS) HP-IB menu, or the SCPI mnemonic
SYST:COMM:GPIB: ADDR.

Moving Data Through the HP-IB

Data is output and entered into the program through the HP-IB with the OUTPUT and ENTER
statements, respectively. The only difference between the OUTPUT and ENTER statements for
the HP-IB and those for other interfaces is the addressing information within HP-IB device
selectors.

The following examples show several different syntax styles which you can use.

100 Hpib=7

110 Device_addr=22

120 Device_selector=Hpib * 100 + Device_addr
130 !

140 OUTPUT Device_selector;"F1R7T2T3"

150 ENTER Device_selector;Reading

320 ASSIGN @Hpib_device TO 702
330 OUTPUT @Hpib_device;'"Data message"
340 ENTER @Hpib_device;Number

440 O0UTPUT 800;"SOUR1:POW -10 dBm"

480 ENTER 724;Readings ()

General Structure of the HP-IB

Communications through the HP-IB are made according to a precisely defined standard (the
IEEE 488.1 standard). The rules set by IEEE 488.1 ensure that orderly communication takes
place on the bus. For more information about the structure of the HP-IB and the IEEE 488.1
standard, refer to the Tutorial Description of the Hewlett-Packard Interface Bus.

Devices that communicate over the HP-IB perform one or more of the following three
functions.

m Talk — send data over the bus
m Listen — receive data over the bus
m Control — control the exchange of data on the bus

8-2 Interfacing with External Devices

The System Controller

The controller is a device that has been designated to control the communication occurring on
the bus. It specifies which device talks, which device listens and when the exchange of data
takes place.

An HP-IB system can have more than one device with the ability to control the bus, but only
one of these devices is allowed to control the exchange of data at any given time. The device
that is currently controlling the exchange of data is called the Active Controller.

One device must be able to take control of the bus even if it is not the active controller.
The device designated as the System Controller is the only device with this ability. To

designate the analyzer as the system controller use the System Controller softkey in the

(SYSTEM OPTIONS) HP-IB menu.

The system controller is generally designated before running a program and should not be
changed under program control. An exception to this is when an IBASIC program is running
on the analyzer’s internal controller. If the IBASIC program controls other HP-IB devices, the
analyzer must be designated as the system controller.

A SCPI mnemonic SYST:COMM:GPIB:CONT <0N|OFF> can be used to make the analyzer the
system controller. Program execution should be carefully synchronized, using the Operation
Complete command (*0PC?) and waiting for a reply before any OUTPUT 7xx command is sent.
(Refer to the “Synchronizing the Analyzer and a Controller” chapter in the Programmer’s
Guide for more information on the *0PC? command.)

Using the Serial and Parallel Ports

The analyzer has two additional ports that can be used to control peripherals, material handlers
or other devices. Active control of the HP-IB interface is not needed when these ports are
being used. These ports are a parallel port and a serial port for use with hardcopy output to
non-HP-IB printers and plotters.

In addition to the serial and parallel ports, there are also two BNC connectors on the rear panel
of the analyzer. These connectors provide access (using TTL signal levels) to two programmable
bits.

m Limit Test TTL bit — indicates the results of a pass/fail limit test
m User TTL bit — to be used as needed (for example to use with a foot pedal)

Using the Analyzer Ports in IBASIC programs

IBASIC can directly control the serial port, the parallel port, the Pass/Fail TTL bit, and the User
bit without using HP-IB commands with READIO and WRITEIO. READIO and WRITEIQ are faster
than HP-IB commands.

Interfacing with External Devices 8-3

Writeable Ports

WRITEIO

WRITEIO

WRITEIO

WRITEIO

WRITEIO

15,0;4

15,1;4A

15,2;4A

15,3;4A

9,0;A

Outputs 8-bit data to the Cent_DO through D7 lines of the Centronics
port. Cent_DO is the least significant bit, Cent_D7 is the most
significant bit. Sets Printer_select signal high (de-select). Checks
Centronics status lines for

Out of Paper

Printer Not on Line

BUSY

ACKNOWLEDGE

Sets/clears the “user” bit according to the least significant bit of A. A
least significant bit equal to 1 sets the user bit high. A least significant
bit of O clears the user bit.

Sets/clears the limit pass/fail bit according to the least significant bit of
A. A least significant bit equal to 1 sets the pass/fail bit high. A least
significant bit of O clears the pass/fail bit.

Outputs 8-bit data to the Cent_DO through D7 lines of the Centronics
port. Cent_DO is the least significant bit, Cent_D7 is the most
significant bit. Sets Printer_select signal high (de-select). Does not
check Centronics status lines.

Outputs a byte to the serial port. The byte is output serially according
to the configuration for the serial port. (See above.)

Readable Ports [I=READIO(A,B)]

READIO
READIO
READIO
READIO
READIO

9,0
15,0
15,1
15,2
15,10

Reads the serial port.

Reads the 8-bit data port, Cent_DO through D7.
Reads the user bit.

Reads the limit test pass/fail bit.

Reads the 8-bit status port
e DO - Cent_acknowledge
D1 - Cent_busy

D2 - Cent_out_of_paper
D3 - Cent_on_line

D4 - Cent_printer_err

An example program, REPORT, demonstrating peripheral control over the parallel port is
provided in Chapter 11, “Example Programs.”

Refer to “Automating Measurements” in the Users Guide for further explanation and examples
of how to access the analyzer’s 1/0 ports.

84 Interfacing with External Devices

General Bus Management

The HP-IB standard provides several mechanisms that allow managing the bus and the devices
on the bus. Here is a summary of the IBASIC statements that use these control mechanisms.

ABORT — abruptly terminates all bus activity and resets all devices to their power-on HP-IB
states.

CLEAR — sets selected (or all) devices to a pre-defined, device-dependent HP-IB state.

LOCAL — returns selected (or all) devices to local (front panel) control.

LOCAL LOCKOUT — disables selected (or all) devices’ front panel controls.

REMOTE — puts selected (or all) devices into their device-dependent, remote modes.

SPOLL — performs a serial poll of the specified device (which must be capable of responding).
TRIGGER — sends the trigger message to a device (or selected group of devices).

These statements (and functions) are described in the following discussion. However, the
actions that a device takes upon receiving each of the above commands are, in general,
different for each device. For external devices, refer to the particular device’s manuals to
determine how it will respond.

All of the bus management commands, with the exception of ABORT, require that the program
be the active controller on the interface. A running IBASIC program is always active controller
on the internal interface (select code 8). For the program to be active controller on the
external interface (select code 7), the instrument must either be set as system controller or
have control passed to it from an external controller. The program automatically assumes the
controller status of the host instrument. For more information refer to “The IBASIC HP-IB
Model” section later in this chapter.

Note In this section the term Host Instrument refers to the instrument where the
IBASIC controller is located.

Interfacing with External Devices 8-5

REMOTE

Most HP-IB devices can be controlled either from the front panel or from the bus. If the
device’s front panel controls are currently functional, it is in the Local state. If it is being
controlled through the HP-IB, it is in the Remote state. Unless operating in the Local Lockout
mode, each HP-IB device has method (usually a key) to return itself to Local (front panel)
control.

When the analyzer is being controlled by a program running on an external controller, the
Return to Local softkey is always available to return the analyzer to Local control.

The Remote message is automatically sent to all devices whenever the system controller

is powered on, reset, or sends the Abort message. A device also enters the Remote state
automatically whenever it is addressed. The REMOTE statement also outputs the Remote
message, which causes all (or specified) devices on the bus to change from local control to
remote control. The host instrument must be designated as the system controller before an
IBASIC program can execute the REMOTE statement on select code 7.

Host Instrument

The REMOTE statement has no effect on the host instrument since it is always in remote
control whenever an IBASIC program is running. Specifying the internal interface in a REMOTE
statement will not generate an error, but will have no effect.

LOCAL LOCKOUT

The Local Lockout message effectively locks out the “local” switch present on most HP-IB
device front panels. It maintains system integrity by preventing a user from interfering with
system operations by pressing buttons. As long as Local Lockout is in effect, no bus device can
be returned to local control from its front panel.

The Local Lockout message is sent by executing the LOCAL LOCKOUT statement. This message
can be sent to all devices on the external interface by specifying the bus address (7).

Specifying a single address on the bus (i.e. 722) sends the command to only the device at that
address. The Local Lockout message is cleared when the Local message is sent by executing the
LOCAL statement. However, executing the ABORT statement does not cancel the Local Lockout
message.

Host Instrument

The Local Lockout message is not supported for the host instrument since front panel control is
always necessary in order to pause or abort the program. Specifying the internal interface in a
LOCAL LOCKOUT statement will not generate an error, but will have no effect.

8-6 Interfacing with External Devices

LOCAL

During system operation, it may be necessary for an operator to interact with one or more
external devices. For instance, an operator might need to work from the front panel to make
special tests or to troubleshoot. It is also good systems practice to return all devices to local
control when remote-control operations are complete. Executing the LOCAL statement returns
the specified devices to local (front panel) control.

If primary addressing is specified, the Go-to-Local message is sent only to the specified
device(s). However, if only the interface select code is specified (LOCAL 7), the Local message is
sent to all devices on the external interface and any previous Local Lockout message (which is
still in effect) is automatically cleared.

Host Instrument

The LOCAL statement has no effect on the host instrument since it is always in remote
control whenever an IBASIC program is running. Specifying the internal interface in a LOCAL
statement will not generate an error.

TRIGGER

The TRIGGER statement sends a Trigger message to a selected device or group of devices. The
purpose of the Trigger message is to initiate some device-dependent action; for example, it can
be used to trigger a digital voltmeter to perform its measurement cycle. Because the response
of a device to a Trigger message is strictly device-dependent, neither the Trigger message nor
the interface indicates what action is initiated by the device.

Specifying only the interface select code outputs a Trigger message to all devices currently
addressed to listen on the bus. Including a device address in the statement triggers only the
device addressed by the statement.

Host Instrument

The TRIGGER statement is supported by the analyzer. Issuing a TRIGGER command will initiate a
single sweep assuming the analyzer is in TRIGGER hold mode. TRIGGER is ignored if not in hold
mode.

CLEAR

The CLEAR statement provides a means of “initializing” a device to its predefined
device-dependent state. When the CLEAR statement is executed, the Clear message is sent
either to all devices or to the specified device, depending on the information contained within
the device selector. If only the interface select code is specified, all devices on the specified
HP-IB interface are cleared. If primary-address information is specified, the Clear message is
sent only to the specified device. Only the active controller can send the Clear message.

Host Instrument

The CLEAR statement is fully compatible on the internal interface.

Interfacing with External Devices 8-7

ABORT

This statement may be used to terminate all activity on the external bus and return the HP-IB
interfaces of all devices to reset (or power-on) condition. Whether this affects other modes of
the device depends on the device itself. The IBASIC program must be either the active or the
system controller to perform this function. If it is the system controller and has passed active
control to another device, executing this statement causes active control to be returned. Only
the interface select code may be specified; primary-addressing information (such as 724) must
not be included.

Aborting the Internal Bus

ABORT is not supported for select code 8. Executing ABORT 8 will not generate an error.

HP-IB Service Requests

Most HP-IB devices, such as voltmeters, frequency counters, and analyzers, are capable

of generating a “service request” when they require the active controller to take action.
Service requests are generally made after the device has completed a task (such as making a
measurement) or when an error condition exists (such as a printer being out of paper). The
operating and/or programming manuals for each device describe the device’s capability to
request service and conditions under which the device will request service. To request service,
the device sends a Service Request message (SRQ) to the active controller. The mechanism

by which the active controller detects these requests is the SRQ interrupt. Interrupts allow

an efficient use of system resources, because the system may be executing a program until
interrupted by an event’s occurrence. If enabled, the external event initiates a program branch
to a routine which “services” the event (executes remedial action).

Setting Up and Enabling SRQ Interrupts

In order for an HP-IB device to be able to initiate a service routine in the active controller, two
prerequisites must be met: the SRQ interrupt event must have a service routine defined, and
the SRQ interrupt must be enabled to initiate the branch to the service routine.

The following program segment shows an example of setting up and enabling an SRQ interrupt.

100 Hpib=7

110 ON INTR Hpib GOSUB Service_routine
120 !

130 Mask=2

140 ENABLE INTR Hpib;Mask

Since IBASIC recognizes only SRQ interrupts, the value assigned to the mask is meaningless.
However, a mask value may be present as a placeholder for compatibility with HP Series BASIC
programs.

8-8 Interfacing with External Devices

When an SRQ interrupt is generated by any device on the bus, the program branches to the
service routine when the current line is exited (either when the line’s execution is finished or
when the line is exited by a call to a user-defined function). The service routine, in general,
must perform the following operations:

Determine which device(s) are requesting service
Determine what action is requested

Clear the SRQ line

Perform the requested action

Re-enable interrupts

Return to the former task (if applicable)

N e

Note The ON INTR statement must always precede the ENABLE INTR statement when
the two are used in the same program.

Servicing SRQ Interrupts

The SRQ is a level-sensitive interrupt; in other words, if an SRQ is present momentarily but
does not remain long enough to be sensed by the controller, an interrupt will not be generated.
The level-sensitive nature of the SRQ line also has further implications, which are described in
the following paragraphs.

Example

Assume that only one device is currently on the bus. The following service routine serially
polls the device requesting service and clears the interrupt request. In this case, the controller
does not have to determine which device was requesting service because only one device is
present. Since only service request interrupts are enabled in IBASIC, the type of interrupt does
not need to be determined either. The service is performed, and the SRQ event is re-enabled to
generate subsequent interrupts.

500 Serv_rtn: Ser_poll=SPOLL(@Device)
510 ENTER @Device;Value

520 PRINT Value

530 ENABLE INTR 7 ! Use previous mask.
540 RETURN

The IEEE standard states that when an interrupting device is serially polled, it is to stop
interrupting until a new condition occurs (or the same condition occurs again). To “clear”
the SRQ line, a serial poll must be performed on the device. By performing this serial poll,
the controller acknowledges to the device that it has seen the request for service and is
responding. The device then removes its request for service (by releasing SRQ).

If the SRQ line had not been released, the controller would have branched to the service
routine immediately upon re-enabling interrupts on this interface. This is due to the
level-sensitive nature of the SRQ interrupt.

Also note that once an interrupt is sensed and logged, the interface cannot generate another
interrupt until the first interrupt is serviced. The controller disables all subsequent interrupts
from an interface until a pending interrupt is serviced.

Interfacing with External Devices 8-9

Conducting a Serial Poll

A sequential poll of individual devices on the bus is known as a Serial Poll. A byte of
device-specific status is returned in response to a Serial Poll. This byte is called the “Status
Byte” message and, depending on the device, may indicate an overload, a request for service,
or a printer being out of paper. The particular response of each device depends on the device.

The SPOLL function performs a Serial Poll of the specified device; the program must currently
be the active controller in order to execute this function.

Examples

ASSIGN @Device TO 700
Status_byte=SPOLL(@Device)

Spoll_724=SPOLL(724)

The Serial Poll is meaningless for an interface since it must poll individual devices on the
interface. Therefore, primary addressing must be used with the SPOLL function.

Passing and Regaining Control

Active control of the bus can be passed between controllers using the PASS CONTROL command.
The following statements first define the HP-IB interface’s select code and the new active
controller’s primary address and then pass control to that controller.

100 Hp_ib=7
110 New_ac_addr=20
120 PASS CONTROL 100*Hp_ib+New_ac_addr

Once the new active controller has accepted active control, the controller passing control
assumes the role of a non-active controller on the specified HP-IB interface. The concept of
using pass control with IBASIC is discussed in the next section, “The IBASIC HP-IB Model.”

8-10 Interfacing with External Devices

The IBASIC HP-IB Model

The fact that IBASIC resides in, and coexists with an instrument poses a large set of possible
interactions, both internal to the instrument and externally with other controllers and
instruments. This section defines the principal players and rules of order when IBASIC is
running within the host instrument.

External and Internal Busses

There is physically only one HP-IB port and one HP-IB address for the analyzer. IBASIC has
access to two HP-IB ports: the “real” external port (select code 7) and a “virtual” internal port
(select code 8), through which it communicates with the analyzer.

The analyzer has only one output buffer, one input buffer and one set of status registers.
Commands and data from both ports are placed in the same input buffer and data read out of
both ports comes from the same output buffer. The instrument will not provide any kind of
arbitration between an external controller and an IBASIC program.

The analyzer always behaves as if there is only one controller. If an IBASIC program is running,
it is assumed to be the controller and therefore will receive all SRQs from the host instrument
(via the internal port).

Service Request Indicators

An external controller may perform a serial poll (SPOLL) at any time without affecting a
running IBASIC program. There are two Service Request Indicators (SRI) - one for the external
port and one for the internal port. The internal SRI can only be cleared by an IBASIC program
performing an SPOLL on device 800. The external SRI can only be cleared by an SPOLL from an
external controller and can only be set when there is not an active IBASIC program.

The two SRI’s will be set to their OR’d value when a program starts, and again when it finishes.
This assures that any pending SRQ’s can be serviced by the instrument’s new controller.

The pausing or termination of a program will cause the Program Running bit in the Device
Status register to go low. This can be used to generate an external SRQ. (For an example, see
the DUALCTRL example in Chapter 11, “Example Programs.”)

Interfacing with External Devices 8-11

IBASIC as the Active Controller

The IBASIC program is always the active controller on the internal interface (select code 8).
When a program starts running, the HP-IB controller status of the instrument is automatically
passed to the program. For example, if the instrument is set as System Controller, a program
running in the instrument automatically becomes system controller and active controller on
the external bus and the instrument relinquishes active control. When the program stops, the
instrument regains active control.

Also, if an instrument set as Talker/Listener is passed control from an external controller, any
program running in the instrument becomes active controller on the external interface.

Thus, there are two cases where a program running in an instrument can be active controller
on the external interface:

m When the host instrument is set as System Controller and the program has not passed control

m When the host instrument is set as Talker/Listener and the instrument has been passed
control from an external controller.

Passing Active Control to the Instrument

The only way that the analyzer can gain active control of the external interface while a
program is running is if the program is currently the active controller on select code 7 and
passes control to the instrument. Normally, the active controller on the 7 bus can pass control
to any device on the interface by using the statement

PASS CONTROL 7xx

where "xx" represents the address of the device on the bus. Because an IBASIC program does
not interface with the host instrument over select code 7, a different method is used to pass
control in this case. To pass active control of the external interface from an IBASIC program to
the host instrument, use the statement

PASS CONTROL 8xx

where “xx” represents any two digit number from 00 to 99. This allows the instrument to
control external plotters, printers and disk drives. When the instrument is finished with its
HP-IB control activity, it automatically passes control back to the program.

Note Control over the internal bus is used to govern access to the external bus.
When the instrument is given control over the internal bus, it is actually given
access to the external HP-IB hardware.

8-12 Interfacing with External Devices

IBASIC as a Non-Active Controller

IBASIC programs are always the active controller on the internal interface. There are two cases
where an IBASIC program does not have control of the external HP-IB interface:

m When the host instrument is set as Talker/Listener and active control has NOT been passed
from an external device

m When the host instrument is set as System Controller and the program has passed control to
either the host instrument or another device on the external interface

In both of these cases, the program cannot perform activities of any kind on the external
interface.

Note An IBASIC program cannot act as a device on the external bus. To
communicate with an external controller, the IBASIC program must be
active controller and the external controller must act as the device (see the
“Interfacing with an External Controller” section that follows).

Interfacing with an External Controller

So far, we have discussed the ability to interface IBASIC programs with a network of external
devices using the HP-IB. The idea of including an external controller in that network, and
interfacing an IBASIC program with a program running in that computer presents some new
possibilities.

External controller programs can interface with IBASIC programs (referred to as “internal
programs”) over HP-IB in two basic ways:

First, the two programs can pass data back and forth using simple OUTPUT and ENTER
statements. This requires coordination of both the internal and external programs and also
requires that the internal program be the active controller during the interaction. To get an
internal program and an external program to work together successfully, you should have a
good understanding of the HP-IB model, presented earlier in this chapter.

Second, the external program can make use of the extensive set of analyzer HP-IB commands
that interface with IBASIC programs. These mnemonics fall under the subsystem PROGram and
allow the external controller to remotely perform many of the IBASIC front panel activities.
This includes the ability to run, stop, pause, continue and delete an internal program. You can
also remotely query or set the values of numeric and string variables.

Also included in the analyzer HP-IB command set are commands that allow you to transfer
programs and program data to and from the instrument. Programs can be transferred
(uploaded and downloaded) between an external controller and the program buffer in the
instrument, and data can be transferred between an external program and a non-running
internal program by setting and querying internal program variables. These SCPI mnemonics
are described in the Programmer’s Guide.

Also, refer to example programs included on the IBASIC Example Programs Disk: DUALCTRL,
TRICTRL, UPLOAD and DOWNLOAD. These programs demonstrate using IBASIC with an external
controller.

Interfacing with External Devices 8-13

Synchronizing IBASIC with an External Controller

Using OUTPUT and ENTER statements

Commands sent to the analyzer with OUTPUT and ENTER statements from IBASIC and from
the external controller at the same time must be synchronized by the programmer. These
commands cannot be allowed to overlap. Overlapped commands sent from the external
controller and IBASIC will result in unpredictable behavior or deadlocks.

For example:
If the external controller executes:

OUTPUT 716 ; “<command>”

and IBASIC simultaneously executes:

OUTPUT 800 ; “<command>”

the results are unpredictable.

To avoid overlapped commands, you must ensure that only the controller is allowed to send
commands or only IBASIC is allowed to send commands at any one time. One possible method
to avoid overlap is described below. For this method, when the respective controller is done
sending commands, the other controller is informed. The alternate controller then may begin
sending commands. After each set of commands is completed, the alternate controller is
informed and given a signal to send commands to the analyzer. See example program TRICTRL
in Chapter 11.

Using Status information

Status information must also be synchronized between the IBASIC program and a program
running on an external controller. The status information is shared between these programs.
Commands which affect the status information should not overlap between the IBASIC program
and the external controller.

For example:
From an external controller:
QUTPUT 716;"<command> ; xOPC?"
ENTER 716;0pc
From IBASIC, simultaneously execute:
QUTPUT 800 ;"*CLS"

may cause the external controller to not complete execution. The *CLS command clears status
information which the external controller may be waiting for. The commands which affect
status information include *0PC, *0PC?, *WAI, *CLS, *RST, *SRE, *ESE, and STAT:PRES.

8-14 Interfacing with External Devices

Design Rules
Design your IBASIC and External Controller with the following rules:
m Do not overlap commands between the external controller and IBASIC.

m Do not change status information which is expected by the alternate controller. Design
programs such that status information does not overlap.

See the example program, TRICTRL, which implements a synchronization protocol between an
external controller and two instruments running IBASIC programs.

Transferring Data Between Programs

Using OUTPUT and ENTER statements

All data sent from an external controller to the instrument’s external port is received by the
instrument and not by any program running in it. Therefore, a non-active controller IBASIC
program can never enter or output data via the external interface. This means that in order
to pass data between an external controller and an internal program using OUTPUT and ENTER
statements, the internal program must be given active control and the external controller must
become the non-active controller. HP IBASIC for Windows and HP BASIC controllers have the
ability to enter and output data via HP-IB while acting as a non-active controller.

Note Moving data through the HP-IB and running a measurement in the host
instrument at the same time can slow both operations significantly.

It is recommended that you do not perform these operations simultaneously.

One method of passing data between the two controllers is to set the instrument as
Talker/Listener and run a program on the external controller that starts the IBASIC program
and passes control to it. The IBASIC program can then output data to, and enter data from,
the external controller. Two programs, that are listed in Chapter 11, “Example Programs,”
demonstrate how to transfer data between an internal program and an external controller
program. The first program, DATA_EXT, is run from an external controller. It assumes that

a disk containing the corresponding IBASIC program DATA_INT is in the disk drive of the
analyzer. It remotely loads the IBASIC program, starts it and then transfers active control to
it. The IBASIC program DATA_INT, with active control of the interface, queries the external
program for name of the drive to catalog, and then outputs the catalogued string to the
external program and passes active control back. After receiving the catalog data, the external
program goes into a loop (line 1080) executing a command that continues to generate an error
until the host computer again becomes active controller when control is passed back.

Interfacing with External Devices 8-15

Setting and Querying Variables

Another means of transferring data between an internal and an external program involves
the ability to set and query internal program variables from an external program. The
"PROGram[:SELected] :NUMBer" and "PROGram[:SELected] : STRing" mnemonics (and their
query counterparts) are part of the analyzer HP-IB commands. The internal program must not
be running when these commands are executed.

The command
PROG:NUMB < string >, < value >

sets the value of a numeric variable in the program. The command
PROG:STR < string >, < value >

sets the value of a string variable in the program. In both the PROG:NUMB and PROG:STR
commands and queries, < string > is the variable name and must be string data (in quotes). In
the PROG:STR command, < value > is also string data (in quotes).

Numeric and string parameters can also be queried. The query
PROG:NUMBer? < string >
returns the value of the specified numeric variable.

Arrays of REAL or INTEGER type may be sent or queried but arrays of strings are not allowed.
Array elements are separated by commas.

Examples
OUTPUT 716;"PROG:NUMBER ’Test’,99"

OUTPUT @Ibasic;"PROG:STRING ’A$’,’String Data’"

QUTPUT 716;"PROG:NUMB? ’Iarray(*)’"

The following program segment sends both numeric and string variable queries and enters the
resulting data:

10 ASSIGN @Prog TO 716

20 OQUTPUT @Prog;'"FORM ASCII,3"

30 OUTPUT @Prog;'"PROG:NUMB? ’Test’"

40 ENTER @Prog; Testval

50 PRINT "The value of the variable Test = " ;Testval
60 OUTPUT @Prog;"PROG:STR? ’A$’"

70 ENTER @Prog; Str$

80 PRINT "A$ = ";Str$

90 END

8-16 Interfacing with External Devices

Downloading and Uploading Programs

Programs can be transferred between an external controller and program memory using

the HP-IB download command "PROGram[:SELected] :DEFine" and its upload query
Y"PROGram[:SELected] :DEFine?". Programs that use these mnemonics are run in the external
controller.

Downloading

Program data transferred (downloaded) from the external controller to the instrument is
always transferred as an “arbitrary block.” The arbitrary block may be a definite length or
indefinite length block. The indefinite length block is by far the easiest and is simply a block
of data that begins with the characters "#0" preceding the first line and ends with a line-feed
character accompanied by an EOI signal on the HP-IB interface.

When using the mnemonic PROG:DEF to download program lines, the #0 must not be followed
by a line-feed. Each program line must have a line number at its beginning and a line-feed at
its end. To end the arbitrary block of program lines, a single line-feed must be output with the
OQUTPUT END parameter, which sends the EOI (End or Identify) signal on the HP-IB control lines.

Refer to Chapter 11, “Example Programs” for a listing of the example program DOWNLOAD.

Notice that the OUTPUT statement on line 460 is terminated with a semicolon. This suppresses
the line-feed that would otherwise occur.

As each line of the program is downloaded it is checked for syntax.

If an error is found, the error message is displayed on the CRT and the line is commented and
checked for syntax again. If it still causes an error (for example the line may be too long) the
line is discarded.

Any lines that currently exist in the memory buffer will remain unless they are overwritten by
downloaded program lines. This makes it easy to edit lines in an external controller and then
download only the edited lines into an existing program. If you want to completely overwrite
the current program in memory, you must delete the program first. This can be done remotely
using the extended command PROG:DEL: ALL (see line 350).

Interfacing with External Devices 8-17

Uploading

The mnemonic PROG:DEF? is used to upload a program from the program buffer. The entire
program is then returned as a definite length arbitrary block. A definite length block starts
with the "#" character followed by a single digit defining the number of following digits to read
as the block length.

Refer to Chapter 11, “Example Programs” for a listing of the example program UPLOAD, which
demonstrates an uploading routine run on an external controller.

The subroutine Openfile (lines 570 through 770) creates an ASCII file to save the uploaded
program to. The number of 256 byte records declared in the CREATE ASCITI statement (line
730) is simply the file size (declared in the definite block header) divided by 256. Line 720
accommodates any remainder in this calculation by increasing the file size number by one
record if any remainder exists.

Although this simple method works for many uploaded programs, there may still be a problem
with the file size caused by the OUTPUT statement in line 490. This is because every ASCII line
in a LIF file contains a two byte length header and possibly one additional pad byte to make
the length an even number of bytes. These extra bytes are not included in the definite length
block header information. You can account for this extra overhead by allocating an extra 10 to
15 percent of space when you create the ASCII file. For example, the Openfile subroutine
could be rewritten as:

570 SUB Openfile(@File,Filename$,Fsize)

680 ON ERROR GOTO Openerr

715 Fsize=Fsize+(Fsizex0.15)

720 1IF Fsize MOD 256>0 THEN Fsize=Fsize+256
730 CREATE ASCII Filename$,Fsize DIV 256

8-18 Interfacing with External Devices

Using Subprograms

Analyzer products shipped with the IBASIC option can run subprograms. The subprograms may
be user-created or built-in.

User-Created Subprograms

You can use the LOADSUB keyword with subprograms of your own creation. LOADSUB enables
you to append subprograms to other programs and is supported as described in the RMB
manual. When using LOADSUB, keep in mind the following:

m Subprograms must be stored to files using the STORE keyword when first created.

m Subprograms may be stored from the external keyboard or from the front panel if the
[File Type] format is BIN.

m BIN type files are generally not transportable between the analyzer and other development
systems (only ASCII files are compatible with other systems).

Typical examples of LOAD/STORE:
From an external keyboard:
LOAD “MYFILE”
STORE “MYFILE”

From the front panel:

Programs File Type BIN Save/Program

Programs File Type BIN Recall/Program
Typical examples of LOADSUB:
LOADSUB subprogram_name FROM “filename”
LOADSUB ALL FROM “filename”

User-created subprograms are appended to the end of the BASIC program currently stored in
the EDIT buffer.

Using Subprograms 9-1

Built-In High-Speed Subprograms

You can use LOADSUB to access pre-compiled routines stored as instrument firmware in
internal memory. Any IBASIC program running on the analyzer can access these subprograms;
programs running on external computers cannot. The external program must use the
equivalent code listed in Chapter 9 in place of a built-in subprogram.

IBASIC programs which use the built-in subprograms are simpler and run faster. For example,
most data transfer operations run twice as fast when using the built-in subprograms; math
operations run many times faster. Built-in subprograms are stored in memory designated as
“MEM,0,0”.

To access a subprogram, the subprogram first must be loaded into the main program using the
LOADSUB keyword. The LOADSUB keyword requires a filename be specified from which to
load the subprogram. Three built-in files are “XFER”, “MATH”, and “RPG”.

m “XFER” file adds support to transfer trace data between the instrument and the IBASIC
program.

m “MATH” file adds high speed support for complex array operations.
m “RPG” file adds fast RPG (rotary pulse generator — front panel knob) response for markers.

LOADSUB <Subprogram name> FROM <Filename:MEM,0,0> loads the named subprogram from
the built-in file “FILENAME”.

LOADSUB ALL FROM <Filename:MEM,0,0> loads all the subprograms in the named built-in file
“FILENAME”. See the following table for subprogram names within the files “XFER”, “MATH”,
and “RPG”.

9.2 Using Subprograms

Table 9-1.

Built-in Subprogram Description (Filenames found in :MEM,0,0)
Filename Subprogram Name (parameter list) Description

XFER Read _fdata(INTEGER Chan,REAL A(*)) Read real formatted data
Read fmem(INTEGER Chan,REAL A(*)) Read real formatted mem
Read_cdata(INTEGER Chan,REAL A(*)) Read complex data
Read_cmem(INTEGER Chan,REAL A(*)) Read complex memory
Write_fdata(INTEGER Chan,REAL A(*)) Write real formatted data
Write_fmem(INTEGER Chan, REAL A(*)) Write real formatted mem.
Write_cdata(INTEGER Chan,REAL A(*)) Write complex data
Write_cmem(INTEGER Chan,REAL A(*)) Write complex memory
Read_rdata(INTEGER Chan,Input$, REAL A(*)) Read raw complex data
Write_rdata(INTEGER Chan,Input$,REAL A(*)) Write raw complex data
Read_corr(INTEGER Chan, N,REAL A(*)) Read complex error coef.
Write_corr(INTEGER Chan, N,REAL A(*)) Write complex error coef.

MATH

Define Complex Array
Operations

Define Complex Number
Operations

RPG

Cmplx_mag(REAL Cdata(*),Mag(*),INTEGER Sz)

Cmplx_arg(REAL Cdata(*),Arg(*),INTEGER Sz) !Arg of
complex array

Cmplx_conjg(REAL A(*),B(*)) !Complex conj of array A to
B

Cadd(REAL Op1(*),INTEGER Row1,REAL
Op2(*),INTEGER Row2 REAL Ans(*),INTEGER Rowans)

Csub(REAL Op1(*),INTEGER Row1,REAL
Op2(*),INTEGER Row2 REAL Ans(*),INTEGER Rowans)

Cmul(REAL Op1(*),INTEGER Row1,REAL
0p2(*),INTEGER Row2 REAL Ans(*),INTEGER Rowans)

Cdiv(REAL Op1(*),INTEGER Row1,REAL
Op2(*),INTEGER Row2 REAL Ans(*),INTEGER Rowans)

SUB Rpg_function (INTEGER function)

Mag of complex array

Complex Ans=0pl+O0p2
Complex Ans=0pl-Op2
Complex Ans=0pl*0Op2
Complex Ans=0pl/0Op2
Redirect RPG & STEP keys
function

0=normal

1=Actv MKR & INPUT
2=Actv MKR & LABELS

Using Subprograms 9-3

Example Programs

1 Example use of built in subprograms
10 LOADSUB Read_fdata FROM "XFER:MEM,0,0" Appends Read_data sub pro-

gram to end of this program.

This subprogram can now be

called.

20

30

40

50 REAL Trace_array(1:201) Reads Channel 1 data into

60 Read_fdata(1, Trace_array(*)) Trace_array(*)

70 LOADSUB ALL FROM "MATH:MEM,O,0O" Appends all math subprograms
defined in “MATH” to the end
of this program.

80 END

90 SUB Read_fdata(INTEGER Chan,REAL A(x)) Read real formatted data.

100 SUB Cmplx_mag(REAL Cdata(*),Mag(*),INTEGER Sz) Mag of complex array.
110 SUB Cmplx_arg(REAL Cdata(*),Arg(*),INTEGER Sz) Arg of complex array.
120 ...

Note Built in subprograms cannot be edited since they are compiled and built into
the firmware. However, any subprogram can be deleted by the DELSUB
keyword support in revision 2 IBASIC.

RUNTIME Built in subprogram Errors

Number Description

8,9,16 Improper or inconsistent dimensions found which specify array size. Using the
wrong number of subscripts when referencing an array element.

983 Wrong type or number of parameters. An improper parameter list for a machine
resident function.

Avoiding Multiple Loads of Subprograms

To avoid multiple LOADS of a subprogram which has already been loaded, the following
example may be used.

10 ON ERROR GOTO 30

20 DELSUB Read_fdata

30 LOADSUB Read_fdata FROM "XFER:MEM,0,0"
40 OFF ERROR

9.4 Using Subprograms

IBASIC Keyword Summary

10

This chapter summarizes the HP Instrument BASIC keyword implementation in the analyzer.
Table 10-1 is alphabetical. It indicates the type of support for each entry and notes exceptions,
if any. Exceptions are major differences between the keywords descriptions in the “HP
Instrument BASIC Language Reference” and their implementation in the analyzer. When
differences are too extensive to be summarized, see the “HP Instrument BASIC Language

Reference.”

Table 10-2 contains the same information as Table 10-1, but is organized by category.

Table 10-1. Alphabetical List of IBASIC Keywords

HP IBASIC Keyword

Support
FP =Front Panel
EK =External

Exceptions

Keyboard

P =Programmable
& FP,EK,P
* EK,P
+ EK,P
- EK,P
/ EK,P
< L=,8>,=,>,> = P
ABORT EK,P Select Code = 7,8,9,15
ABS EK,P
ACS FP,EK,P
ALLOCATE EK,P
AND FP,EK,P
ASN FP,EK,P
ASSIGN EK,P
ATN FP,EK,P
AXES EK,P
BEEP EK,P
BINAND FP,EK,P
BINCMP FP,EK,P
BINEOR FP,EK,P
BINIOR FP,EK,P
BIT FP,EK,P

IBASIC Keyword Summary 10-1

Table 10-1. Alphabetical List of IBASIC Keywords (continued)

HP IBASIC Keyword

Support

FP =Front Panel

EK =External
Keyboard

P =Programmable

Exceptions

CALL

CASE

CASE ELSE
CAT

CHR$
CLEAR
CLEAR SCREEN
CLS

COM

CONT

COPY
COPYLINES
COSs

CREATE
CREATE ASCII
CREATE BDAT
CREATE DIR
CRT

CSIZE

DATA

DATE

DATE$
DEALLOCATE
DEF FN

DEG

DEL

DELSUB

DET

DIM

DISABLE
DISABLE INTR
DISP

DIV

DOT

DRAW

EK,P
P
P
FP,EK,P
FP,EK,P
EK,P
EK,P
EK,P
P
EK,FP
FP,EK,P
EK
FP,EK,P

EK,P
EK,P

EK,P
EK,P
P
EK,P
EK,P
EK,P
P
FP,EK,P
FP,EK
EK,P
EK,P
P
P
P
EK,P
EK,P
EK,P
EK,P

Supports 58 columns. See manual.

Select Code = 7,8,9,15

Line number support from EK only

Abs vals less than
1.7083127722e+ 10

ENTER CRT(ENTER 1) not supported

Front Panel deletes only 1 line

Interface Select Code = 7 or 8

10-2 IBASIC Keyword Summary

Table 10-1. Alphabetical List of IBASIC Keywords (continued)

HP IBASIC Keyword

Support
FP =Front Panel
EK =External

Exceptions

Keyboard

P =Programmable
DROUND EK,P
DUMP ALPHA none Use HPIB command
DVAL FP,EK,P
DVALS$ FP,EK,P
EDIT FPEK Front Panel EDITs default line #
ELSE P
ENABLE P
ENABLE INTR P Interface Select Code = 7 or 8
END P
END IF P
END LOOP P
END SELECT P
END WHILE P
ENTER EK,P
ERRL() P
ERRLN() EK,P
ERRM$ EK,P
ERRN EK,P
EXIT IF P
EXOR FP,EK,P
EXP EK,P
FN P
FNEND P
FOR NEXT P
FRACT EK,P
FRAME EK,P
GCLEAR EK,P
GET FP,EK,P
GINIT EK,P
GOSUB P
GOTO P
GRID EK,P
IDRAW EK,P
IF THEN P

IBASIC Keyword Summary

Table 10-1. Alphabetical List of IBASIC Keywords (continued)

HP IBASIC Keyword

Support
FP =Front Panel
EK =External

Exceptions

Keyboard

P =Programmable
IMAGE P
IMOVE EK,P
INDENT EK
INITIALIZE FP,EK,P
INPUT P See Manual.
INT EK,P
INTEGER P
IPLOT EK,P
IVAL FP,EK,P
IVAL$ FP,EK,P
KBD P Returns select code =2.
LABEL EK,P
LDIR EK,P
LEN FP,EK,P
LET EK,P
LGT EK,P
LIST EK,P Valid Device Selectors
LOAD FP,EK,P
LOADSUB FP,EK,P
LOADSUB ALL FROM ... FP,EK,P
LOCAL EK,P Select Code 7 only.
LOCAL LOCKOUT EK,P Select Code 7 only.
LOG EK,P
LOOP P
LORG EK,P
LWC$ FP,EK,P
MAT EK,P
MAT REORDER EK,P
MAT REORDER ... BY EK,P
MAT foo=CSUM(bar) EK,P
MAT foo=IDN EK,P
MAT foo=INV(bar) EK,P
MAT foo=RSUM(bar EK,P

10-4 IBASIC Keyword Summary

Table 10-1. Alphabetical List of IBASIC Keywords (continued)

HP IBASIC Keyword

Support
FP =Front Panel
EK =External

Exceptions

Keyboard

P =Programmable
MAX EK,P
MAXLEN FP,EK,P
MAXREAL EK,P
MIN EK,P
MINREAL EK,P
MOD EK,P
MODULO EK,P
MOVE EK,P
MOVELINES EK
MSI FP,EK,P MSI may be altered by the instr.
NOT FP,EK,P
NUM FP,EK,P
ON|OFF CYCLE P
ON|OFF ERROR P
ON|OFF INTR P Interface Select Code = 7 or 8
ON|OFF KEY P Key selectors 1 through 7
ON|OFF TIMEOUT P Interface Select Code = 7 or 8
OPTION BASE P
OR FP,EK,P
OouTPUT EK,P Select Code 1,7,8,9,15
PASS CONTROL EK,P Select Code 7 or 8
PAUSE EK,FP,P
PDIR EK,P
PEN EK,P O=erase 1=draw
PENUP EK,P
PI EK,P
PIVOT EK,P
PLOT EK,P
POLYGON EK,P FILL not supported. Scaling diffs.
POLYLINE EK,P
POS FP,EK,P
PRINT EK,P
PRINTER IS EK,P
PROUND EK,P

IBASIC Keyword Summary

10-5

Table 10-1. Alphabetical List of IBASIC Keywords (continued)

HP IBASIC Keyword

Support
FP =Front Panel
EK = External
Keyboard

P =Programmable

Exceptions

PRT

PURGE

RAD
RANDOMIZE
RATIO
RE-SAVE
RE-STORE
READ
READIO
REAL
RECTANGLE
REDIM

REM
REMOTE
REN
RENAME
REPEAT UNTIL
RESTORE
RETURN
REV$

RND
ROTATE
RPLOT
RPT$

RUN

SAVE
SCRATCH
SECURE
SELECT

SET TIME foo
SET TIMEDATE foo
SGN

SHIFT
SHOW

EK,P
FP,EK,P
FP,EK,P
EK,P
EK,P
FP,EK,P
FP,EK,P
EK,P
EK,P
P
EK,P
EK,P
P
EK,P
EK
FP,EK,P
P
P
P
FP,EK,P
EK,P
FP,EK,P
EK,P
FP,EK,P
EK,FP,P
FP,EK,P
FP,EK
FP,EK

FP,EK,P
EK,P
EK,P

FP,EK,P
EK,P

Select Code 9 or 15. See manual.

FILL not supported. Scaling diffs.

Select Code 7

Fill not supported. Scaling diffs.

Front Panel executes SCRATCH A.

10-6 IBASIC Keyword Summary

Table 10-1. Alphabetical List of IBASIC Keywords (continued)

HP IBASIC Keyword

Support
FP =Front Panel
EK =External

Exceptions

Keyboard

P =Programmable
SIN FP,EK,P
SPOLL EK,P Select Code 7
SQR EK,P
SQRT EK,P
STEP FP,EK
STOP FPP
STORE FP,EK,P
SUB P
SUBEND P
SUBEXIT P
SUM EK,P
SYSTEM PRIORITY P
SYSTEM$ EK,P
TAB() EK,P
TABXY() EK,P
TAN FP,EK,P
TIME EK,P
TIMES$ EK,P
TRIGGER EK,P Select Code 7
TRIM$ FP,EK,P
TRN EK,P
UPC$ FP,EK,P
USING EK,P
VAL FP,EK,P
VALS$ FP,EK,P
VIEWPORT EK,P
WAIT EK,P
WHERE EK,P
WHILE P
WIDTH EK,P
WINDOW EK,P
WRITEIO EK,P Select Code 9 or 15. See manual.
- EK,P

IBASIC Keyword Summary

10-7

Table 10-2. Categorical List of IBASIC Keywords

HP Instrument BASIC Keyword

Support
FP =Front Panel
EK = External
Keyboard
P =Programmable

Exceptions

Program Entry/Editing
COPYLINES
DEL
DELSUB
EDIT

INDENT
LIST

MOVELINES

REM

REN

SECURE
Program Debugging

ERRL()

ERRLN()

ERRM$

ERRN

STEP
Memory Allocation

ALLOCATE

COM

DEALLOCATE

DELSUB

DIM

INTEGER

LOADSUB

OPTION BASE

REAL

SCRATCH
Relational Operators

<<=, =0, =
General Math

*

+

/

EK
FP,EK
EK
FP,EK

EK
EK,P

EK
P
EK
FP,EK

EK,P
EK,P
EK,P
FP,EK

EK,P
EK,P
EK,P
EK,P

Front Panel deletes only 1 line.

Front Panel EDITs default line #. See
Manual.

Valid Device Selectors #7xx, #7XXXX,
#9, #15.

Front Panel executes SCRATCH A.

10-8 IBASIC Keyword Summary

Table 10-2. Categorical List of IBASIC Keywords (continued)

HP Instrument BASIC Keyword

Support
FP =Front Panel
EK = External
Keyboard

P =Programmable

Exceptions

ABS

DIV
DROUND
EXP
FRACT
INT

LET

LGT

LOG

MAX
MAXREAL
MIN
MINREAL
MOD
MODULO
PI
PROUND
RANDOMIZE
RND

SGN

SQR

SQRT

Binary Functions
BINAND
BINCMP
BINEOR
BINIOR
BIT
ROTATE
SHIFT

Trigonometric Operations
ACS
ASN
ATN
COS

DEG

EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P

FP,EK,P
FP,EK,P
FP,EK,P
FP,EK,P
FP,EK,P
FP,EK,P
FP,EK,P

FP,EK,P
FP,EK,P
FP,EK,P
FP,EK,P

FP,EK,P

Abs vals less than
1.7083127722e+ 10

IBASIC Keyword Summary

10-9

Table 10-2. Categorical List of IBASIC Keywords (continued)

HP Instrument BASIC Keyword

Support
FP =Front Panel
EK =External

Exceptions

Keyboard
P =Programmable
RAD FP,EK,P
SIN FP,EK,P
TAN FP,EK,P
String Operations
& FP,EK,P
CHRS$ FP,EK,P
DVALS$ FP,EK,P
DVAL FP,EK,P
IVAL$ FP,EK,P
IVAL FP,EK,P
LEN FP,EK,P
LWC$ FP,EK,P
MAXLEN FP,EK,P
NUM FP,EK,P
POS FP,EK,P
REV$ FP,EK,P
RPT$ FP,EK,P
TRIM$ FP,EK,P
UPC$ FP,EK,P
VALS$ FP,EK,P
VAL FP,EK,P
Logical Operations
AND FP,EK,P
EXOR FP,EK,P
NOT FP,EK,P
OR FP,EK,P
Mass Storage
CAT FP,EK,P Supports 58 columns. See manual.
COPY FP,EK,P
CREATE
CREATE ASCII EK,P
CREATE BDAT EK,P
CREATE DIR
GET FP,EK,P

10-10 IBASIC Keyword Summary

Table 10-2. Categorical List of IBASIC Keywords (continued)

HP Instrument BASIC Keyword

Support
FP =Front Panel
EK =External

Exceptions

Keyboard
P =Programmable
INITIALIZE FP,EK,P
LOAD FP,EK,P
LOADSUB FP,EK,P
LOADSUB ALL FROM . .. FP,EK,P
MSI FP,EK,P MSI may be altered by the instr.
When save/recalling programs
to/from DOS subdirectories.
PURGE FP,EK,P
RE-SAVE FP,EK,P
RENAME FP,EK,P
RE-STORE FP,EK,P
SAVE FP,EK,P
STORE FP,EK,P
Program Control
CALL EK,P
CASE P
CASE ELSE P
CONT EK,FP Line number support from EK only
DEF FN P
ELSE P
END P
END IF P
END LOOP P
END SELECT P
END WHILE P
EXIT IF P
FN P
FNEND P
FOR NEXT P
GOSUB P
GOTO P
IF THEN P
LOOP P
PAUSE EK,FP,P
REPEAT UNTIL P

IBASIC Keyword Summary

10-11

Table 10-2. Categorical List of IBASIC Keywords (continued)

HP Instrument BASIC Keyword

Support
FP =Front Panel
EK =External

Exceptions

Keyboard
P =Programmable
RETURN P
RUN EK,FP,P
SELECT P
STOP FPP
SUB P
SUBEND P
SUBEXIT P
SYSTEM$ EK,P
WAIT EK,P
WHILE P
Event Initiated Branching
DISABLE P
DISABLE INTR P Interface Select Code = 7 or 8.
ENABLE P
ENABLE INTR P Interface Select Code = 7 or 8. Must
not precede an ON INTR statement.
ON|OFF CYCLE P
ON|OFF ERROR P
ON|OFF INTR P Interface Select Code = 7 or 8. Must
precede ENABLE INTR statement.
ON|OFF KEY P Key selectors 1 through 7
ON|OFF TIMEOUT P Interface Select Code = 7 or 8
SYSTEM PRIORITY P
Graphics Control
GCLEAR EK,P
GINIT EK,P
RATIO EK,P
SHOW EK,P
VIEWPORT EK,P
WHERE EK,P
WINDOW EK,P
Graphics Plotting
DRAW EK,P
IDRAW EK,P
IMOVE EK,P
10-12 IBASIC Keyword Summary

Table 10-2. Categorical List of IBASIC Keywords (continued)

HP Instrument BASIC Keyword

Support
FP =Front Panel
EK =External

Exceptions

Keyboard
P =Programmable
IPLOT EK,P
MOVE EK,P
PDIR EK,P
PEN EK,P O=erase 1=draw
PENUP EK,P
PIVOT EK,P
PLOT EK,P
POLYGON EK,P FILL not supported. Scaling diffs.
POLYLINE EK,P
RECTANGLE EK,P FILL not supported. Scaling diffs.
RPLOT EK,P FILL not supported. Scaling diffs.
Graphics Axis and Labeling
AXES EK,P
CSIZE EK,P
FRAME EK,P
GRID EK,P
LABEL EK,P
LDIR EK,P
LORG EK,P
HP-IB Control
ABORT EK,P Select Code = 7,8,9,15
CLEAR EK,P Select Code = 7,8,9,15
LOCAL EK,P Select Code 7 only.
LOCAL LOCKOUT EK,P Select Code 7 only.
PASS CONTROL EK,P Select Code 7 or 8
REMOTE EK,P Select Code 7
SPOLL EK,P Select Code 7
TRIGGER EK,P Select Code 7
Clock and Calendar
DATE EK,P
DATE$ EK,P
SET TIME foo FP,EK,P
SET TIMEDATE foo EK,P
TIME EK,P
TIMES$ EK,P

IBASIC Keyword Summary

10-13

Table 10-2. Categorical List of IBASIC Keywords (continued)

HP Instrument BASIC Keyword

Support
FP =Front Panel
EK = External
Keyboard
P =Programmable

Exceptions

General Device Input/Output
ASSIGN
BEEP
CRT
DATA
DISP
ENTER
IMAGE
INPUT
KBD
OUTPUT
PRINT
PRINTER IS
PRT
READ
READIO
RESTORE
TAB()
TABXY()
USING
WIDTH
WRITEIO
Display and Keyboard Control
CLEAR SCREEN
CLS
Array Operations
DET
DOT
MAT
MAT foo=IDN
MAT foo=INV(bar)
MAT foo=CSUM(bar)
MAT foo=RSUM(bar)
MAT REORDER
MAT REORDER ... BY
REDIM
SUM
TRN

EK,P
EK,P
EK,P
P
EK,P
EK,P
P
P
P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P

EK,P
EK,P
EK,P
EK,P
EK,P

EK,P
EK,P

EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P
EK,P

ENTER CRT(ENTER 1) not supported

See Manual.
Returns select code =2.
Select Code 1,7,8,9,15

Select Code 9 or 15. See manual.

Select Code 9 or 15. See manual.

10-14 IBASIC Keyword Summary

11

Example Programs

Example Program Summaries

This chapter contains listings of the example programs referred to throughout this manual.
These programs are all available on the IBASIC Example Programs Disk that accompanies this
manual.

In addition to these example programs, there are two additional disks of examples for the
analyzer. These disks are the Example Programs Disk — DOS Format and the Example
Programs Disk — LIF Format. These disks are included with the analyzer when it is delivered.
All the programs on these disks are designed to run on the analyzer’s internal IBASIC
controller.

The example programs on the IBASIC Example Programs Disk, some of which are listed in this
chapter, include the following:

DATA_EXT — Data transfer between internal and external programs

This program is designed to run on an external controller — either HP IBASIC for Windows
running on a PC or HP BASIC running on an HP workstation.

This program demonstrates how to transfer data from an IBASIC program running on the
analyzer to an HP BASIC or IBASIC program running externally. It loads a program into the
analyzer, runs it, sets a variable and then gives it control of the bus. This program then acts as
a device on the bus (sending and receiving data).

DATA _INT — Data transfer between internal and external programs
This program is designed to run on the analyzer’s internal IBASIC controller.

This program demonstrates how to transfer data to and from an external controller. In this
example a catalog listing is transferred from the analyzer to the external controller. A numeric
variable value is also downloaded from the external controller to the analyzer’s program.

DOWNLOAD — Download program to analyzer

This program demonstrates how to download an IBASIC program to the analyzer. It is designed
(in HP BASIC or HP IBASIC for Windows) to run on an external workstation or PC.

DRAWS871X — Drawing setup diagrams

This program draws the analyzer and a device under test to the full screen IBASIC display
partition. The drawing can be scaled to fit the application. This program uses the analyzer’s
graphics commands for drawing. To use the IBASIC drawing commands, see the “BARCODE”
program.

Example Programs 11-1

DUALCTRL — Two controller operation

This program demonstrates how the external controller and HP IBASIC can work together. It
is designed to run on an external controller (in HP BASIC or HP IBASIC for Windows). The
program downloads an IBASIC program to the analyzer and runs it twice. After each run, two
program variables are read from the analyzer and displayed.

REPORT — Using the parallel port

This program uses the analyzer to generate a report, making a hardcopy on a printer connected
to the parallel port. It uses a subprogram to send the output to the parallel port one line

at a time. Before using this program, be sure that your printer is configured to ignore the
Printer_select Centronics signal, since the WRITEIO command does not assert this signal.

TRICTRL — External controller with local IBASIC controllers

This example program demonstrates how an external controller can be used with two
instruments running IBASIC. Run this program on an external controller. Connect two
instruments via HP-IB cables to the external controller. Set one instrument to address 16, set
the other instrument to address 18.

This program insures that only the analyzer or the local IBASIC is sending SCPI commands at
one time. This is one possible implementation of synchronizing the analyzer and a controller.
Refer to “Automating Measurements” in the User’s Guide.

The external controller is responsible for downloading the IBASIC program to each analyzer.
The external controller sets the status reporting to send a SRQ whenever a user requested
service request occurs.

When all instrument configuration has completed, the external controller sends a “run
program” command to each analyzer and then goes into an idle loop. The external controller
remains in the idle loop until either instrument sends an SRQ.

While the external controller is idle, each instrument can freely send various SCPI commands.
Each instrument may ask for service by triggering an SRQ. Once a SRQ has been triggered,

the instrument must remain in an idle loop, until the external controller indicates it is done
servicing the SRQ. This is done using the program variable “Ctlr_flag”. The flag is cleared when
the external controller is done and has returned to its idle loop.

UPLOAD — Upload program from analyzer

This program uploads the IBASIC program in the analyzer’s program buffer to an ASCII file on
the external controller’s current mass storage device.

USERBEG — Set up user-defined User BEGIN softkeys

This program creates User BEGIN softkeys which allow the user to Save or Recall one of
two instrument states, set the marker to maximum, set the scale/div, and compute some
measurement statistics at the marker.

11-2 Example Programs

USERBEG1 — The default User BEGIN program

The default User BEGIN program is created automatically when there is no IBASIC program
installed. In this default program, softkey 3 is defined to be the marker-to-max function;
softkey 4 prompts the user for a title, and also enables the clock. You may edit this program to
change the functions you need.

USERBEG2 — Fast recall of instrument states

This example program demonstrates the fast recall of previously defined instrument states.
The instrument states SETUP1, SETUPZ, and SETUP3 must have been previously saved to the
analyzer’s internal non-volatile RAM disk. Load the program into the analyzer. Then press the

key. Enable the user-defined by pressing User BEGIN ON. When User BEGIN

is enabled, the softkeys will be labeled “Setupl,” “Setup2,” and “Setup3.” To recall
each setup, select the appropriate softkey.

USER _BIT — Using the USER bit

This program demonstrates how to read and write to the USER bit. The USER bit is a TTL
signal accessible by a BNC connector on the analyzer’s rear panel. IBASIC’s graphics commands
are used to draw the USER bit value to the display.

USERKEYS — Customized softkeys

This program provides an example of how the analyzer’s softkeys can be customized. The
example demonstrates how to set up six instrument states, store them to the analyzer’s internal
memory, and setup two interactive softkey menus to choose between them.

USR_FLOC — Fault location measurements

This example program is for analyzers with Option 100 only. This program creates User BEGIN
softkeys that can be used for making a fault location measurement.

Example Programs 11-3

BARCODE, STATS, DATALOG — Bar Code Programs

You may use bar code readers to simplify your measurement setups. The HPCK-1210 KeyWand
scanner or compatible bar code scanner will work with the analyzer. Connect your bar code
scanner to the DIN keyboard connector. You may connect a keyboard or other DIN key input
device in parallel with the bar code scanner. The bar code scanner will work in place of, or in
addition to, your keyboard.

The INPUT statement is used to read the bar code from the scanner. When the input statement
is encountered, the program will wait until the user has completed an input. The input is
completed whenever a carriage return is received from the keyboard or a bar code has been
successfully scanned by the bar code scanner.

The following three programs, designed to run on the analyzer’s internal IBASIC controller,
demonstrate the use of bar code scanner applications as well as other useful applications.
While a bar code scanner is useful in demonstrating these programs, it is not required; one can
simply press ENTER and the program will input default values. Sample bar codes are provided
for experimentation at the end of this chapter.

The three programs are as follows:

BARCODE - This program demonstrates basic bar code scanning to select one of three filter
setups depending upon what is scanned. RF stimulus is set and response limits are read, set
and tested for each device. Depending upon result, the program prints “PASS” or “FAIL” on
the CRT. Most useful in this program is a subprogram to draw an analyzer representation on the
CRT. This code can be re-used in any user application that may require a guided setup.

The analyzer image (and DUT image) can be both scaled to any size, and offset in the X or
Y axis as required. This is an excellent program to familiarize yourself with graphic routines
using IBASIC graphics commands.

Although most of the other example programs can be used on an external computer, this
program is intended to be used in the analyzer’s internal IBASIC environment only.

STATS - This program first reads a DUT bar code and sets the RF stimulus accordingly. It then
displays a running average of all similar devices and constantly updates the display with both
the current DUT and the current average of all devices tested so far. Also demonstrates the use
of two of the built-in CSUB routines for reading and writing trace data from/to the analyzer.

DATALOG - This program will very quickly store measured trace data for one of three

filters to internal analyzer memory in a format that can be read by spreadsheet programs

for further analysis. Because the data is stored to RAM, the time delay inherent with disks

is not an issue; trace data can be stored in a fraction of a second. With 101 data points per
trace selected, the internal memory will hold over 200 device test results. At this point, the
program automatically transfers the data to disk. Of course, more data points will take longer
to store and fill the memory sooner. The program will read the bar code and select the stimulus
accordingly. It then measures the device and upon request, stores it under a unique name
dependent upon model number and serial number. Once the internal memory is full, or at any
user requested time, all trace data is transferred to disk.

11-4 Example Programs

Note These three programs use a different command to preset the analyzer. This
service command is DIAG:PRES : SERV instead of the more usual SYST:PRES
command. There are two reasons for this:

1. Since the preset power level can be user defined, the normal preset
command will not guarantee a 0 dBm level. This service command will force
the power level to be set to 0 dBm.

2. This service command is required to force the HP 8730A to preset to the
same state as an HP 871xC. Failure to do this will prevent proper operation
of these programs.

Example Programs 11-5

Example Program Listings

DATA_EXT — Data transfer between internal and external programs

10

20

30

40

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490

! BASIC program: DATA_EXT - Data transfer (external)

|
|
|
! This program demonstrates how to transfer data from

! an IBASIC program running on the HP 8711 to an

! HP BASIC program (or an IBASIC program running

! externally). This program was designed to run on a

! computer or PC. It loads a program into the HP 8711,
! runs it, and then gives it control of the bus.

! This program then acts as a device on the bus;

! sending and receiving data.

|

|

|

|

! Before running this program, a disc with the program
’DATA_INT’ should be in the HP 8711’s internal drive.

Initialize variables for the interface select code
and the HP-IB address of the HP 8711.

|

Scode=7

Address=16

Na=Scode*100+Address

|

! Abort any bus traffic, clear the input/output queues
! of the analyzer, clear the analyzer’s status

! registers and the display.

|

ABORT Scode
CLEAR Na

OUTPUT Na;"*CLS"
CLEAR SCREEN

! Dimension an array to hold the catalog listing.
|

DIM Directory$(1:100) [85]

|

! Prompt the operator to insert the disk in the

! HP 8711, load the program and wait until done.
|

INPUT "Put disc with program ’DATA_INT’ into the HP 8711. Press <ENTER>",A$
DISP "Loading program on HP 8711 . . ."

OQUTPUT Na;"PROG:EXEC ’GET ""DATA_INT:INTERNAL""’"
QUTPUT Na;"*0PC?"

ENTER Na;Opc

|

! Read the analyzer’s event status register and
! check for any errors when loading file.

11-6 Example Programs

500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040

OUTPUT Na;"*ESR?"
ENTER Na;Esr
IF Esr>0 THEN
BEEP
DISP "Error occurred while loading ’DATA_INT’
STOP
END IF
|
! Determine the HP-IB address of the controller
! and set the pass control back address.
|
INTEGER Stat,Addr
STATUS 7,3;Stat
Addr=BINAND(Stat,31)
OUTPUT Na;"#PCB ";Addr
|
! Send the command to run the DATA_INT program.
|
DISP "Running the program..."
OUTPUT Na;"PROG:STAT RUN"

Monitor the program’s status. When it has
paused, set the variable for the controller’s
HP-IB address.

OUTPUT Na;'"PROG:STAT?"

ENTER Na;Prog$

IF Prog$<>"PAUS" THEN GOTO 760

OUTPUT Na;"PROG:NUMB ’Host’,'";Scode*100+Addr
OUTPUT Na;"PROG:STAT CONT"

|

! Pass control of the bus to the HP 8711.
]

PASS CONTROL Na

|

! Wait until addressed to talk by the HP 8711,
! then send the name of the disk to catalog.

|

OUTPUT Scode;":INTERNAL"

|

! Wait until addressed to listen by the HP 8711,
! then read the directory from the analyzer.

|

DISP "Reading data . . ."

ENTER Scode;Directory$(*)

|

! Print the catalog to the controller’s display.
|

FOR I=1 TO 100

IF LEN(Directory$(I))>0 THEN PRINT Directory$(I)

NEXT I

|
! Try to return the HP 8711 to LOCAL control.

! If the analyzer is still the active controller

. Program stopped."

Example Programs

117

1050
1060
1070
1080
1090
1100
1110

! an error will be generated and the program

! will loop until control of the bus is received.
|

ON ERROR GOTO 1090

LOCAL Na

DISP no

END

11-8 Example Programs

DATA _INT — Data transfer between internal and external programs

10

20

30

40

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530

IBASIC program: DATA_INT - Data transfer (internal)

|
|
|
! This program demonstrates how to transfer data to

! and from an external controller. In this example a
! catalog listing is transferred from the HP 8711 to
! the external controller. For more information look
! at the program listing for ’DATA_EXT’.

|

|

|

|

! This IBASIC program is intended to run on the
! HP 8711’s internal controller.

|

! Dimension an array to hold the catalog listing.
|

DIM Directory$(1:100) [85]

|
! Pause the program and wait for the controller to
! set the ’Host’ variable with its’ HP-IB address.
! The controller continues this program after the
! variable has been passed.

|

Host=0

PAUSE

! Address the external controller to talk, read
the device to catalog. If the HP 8711 is not
active controller on the bus an error will occur
and the program will loop until control is

! received.

[}

ON ERROR GOTO 340

ENTER Host;Stor_dev$

OFF ERROR

! Catalog the requested storage device into
! the string array.

|

DISP "Reading catalog..."

CAT Stor_dev$ TO Directory$(*)

|

! Address the external controller to listen,
! send the catalog array to the controller.
|

DISP "Transferring data..."

OUTPUT Host;Directory$(*)

|

! Pass control back to the external controller.
|

PASS CONTROL Host

DISP "DONE"

Example Programs

11-9

540 END

11-10 Example Programs

DOWNLOAD — Download program to analyzer

10

20

30

40

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510

! BASIC program: DOWNLOAD - Download program to Rfna

! program to the 871x. This program is designed to

|
|
|
! This program demonstrates how to download an IBASIC
|
! run on an external controller.

|

]
! Initialize variables for the interface select code
! and the HP-IB address of the HP 8711.

]

Scode=7

Address=16

Na=Scode*100+Address

]

! Tnitialize variables, abort any bus traffic and

! clear the input/output queues of the analyzer.

]

DIM Line$[255]

ABORT Scode

CLEAR Na

]

! Get the program’s filename and open the file.
|

Get_filename: INPUT "Program to be transferred?",Filename$

ON ERROR GOTO No_file

DISP "Checking file . . ."

ASSIGN @Basic_prog TO Filename$;FORMAT ON

OFF ERROR

|

! Clear the contents of the analyzer’s program buffer.
|

OUTPUT Na;"PROG:DEL:ALL"
]

! Change the EOL (end of line) character to line feed
! and initialize the line counter.
|

Transfer: ASSIGN @Prog TO Na;EOL CHR$(10)

Line_count=0

|

! Initiate the program transfer (an indefinite length
! block data transfer).

|

OUTPUT @Prog;"PROG:DEF #0";
]

! Read each program line from the file and send it to

! the HP 8711. Loop until the end of file is reached.
|

ON ERROR GOSUB End_file

Example Programs

11-11

520 LOOP

530 ENTER @Basic_prog;Line$

540 OUTPUT @Prog;Line$

550 Line_count=Line_count+1

560 DISP "Lines transferred: ";Line_count

570 END LOOP

580

590 End the data transfer (output a line feed with EO0I)

610 control and stop this program.
620

630 End_block: OUTPUT @Prog;CHR$(10) END
640 ASSIGN @Basic_prog TO *

650 DISP "Transfer complete"

660 LOCAL Na

|
!
600 ! and close the file. Return the analyzer to LOCAL
|
!

670 STOP
680 !
690 This subroutine is the error handler for opening

|

700 ! the file - if the file won’t open it returns to
|
|

710 get a new file name.

720 !

730 No_file: BEEP

740 DISP "CAN’T OPEN: """;Filename$;""" -- ";

750 GOTO Get_filename
760 RETURN

770 !

780 ! This subroutine is the error handler for the
790 ! data transfer. When the end of file is reached
800 ! it generates an error. Execution is resumed
810 ! outside of the transfer loop.

820 !

830 End_file: IF ERRN=59 THEN GOTO End_block

840 DISP ERRM$;" occurred during data transfer"
850 STOP

860 RETURN

870 END

11-12 Example Programs

DRAWS871X — Drawing setup diagrams

O ~NO Ok WN -~

IBASIC program: DRAW871X - Drawing setup diagrams

This program draws the HP 871X network analyzer

and a device under test to the full screen IBASIC
display partition. The drawing can be scaled to
fit the application. Setting the scale factor to
1.0 creates a drawing of about 400 pixels wide

! (1/2 screen width) and 100 pixels high (1/3 screen
! height).

Setup an I/0 path name for the internal bus and
declare variables.

INTEGER XO,YO

REAL Scale

! Make Q@Hp87xx common to all subroutines
COM /Sys_state/ @Hp87xx,Scode

! Identify the computer we are running on

! and assign the i/o port address to @Hp87xx
CALL Iden_port

|

! Preset the analyzer and wait until it is done.
|

QUTPUT @Hp87xx;"SYST:PRES;*0PC?"

ENTER @Hp87xx;0pc

! Allocate the full screen as an IBASIC display
! and clear the graphics buffer.

|

OQUTPUT @Hp87xx;"DISP:PROG FULL"

OUTPUT @Hp87xx;"DISP:WIND10:GRAP:CLEAR"

|

! Rescale the display window for the new VGA display
output @Hp87xx;"DISP:WIND10:GRAP:SCAL 0,1023,0,383"
|

! Setup the origin and scale parameters for the
! drawing. Draw the network analyzer and dut.
|

X0=100

Y0=100

Scale=1.

CALL Draw_na(X0,Y0,Scale)

CALL Draw_dut(X0,Y0,Scale)

END

Example Programs

1113

52 !
53 !
54
55
56 !
57 !
58 !
59
60 OUTPUT @Hp87xx;"DISP:
61 OUTPUT @Hp87xx;"DISP:
&VAL$ (INT(Sc*100))

62 OUTPUT @Hp87xx;"DISP:
"gVALS (YO+INT(Sc*10))

63 OUTPUT @Hp87xx;"DISP:
&VAL$ (INT(Sc*80))

64 OUTPUT @Hp87xx;"DISP:
,"EVAL$ (YO+INT(Sc*80))
65 OUTPUT @Hp87xx;"DISP:
VAL$(INT(Sc*8))

66 OUTPUT @Hp87xx;"DISP:
,"EVAL$ (YO+INT(Sc*70))
67 OUTPUT @Hp87xx;"DISP:
VAL$(INT(Sc*8))

68 OUTPUT @Hp87xx;"DISP:
,"EVAL$ (YO+INT(Sc*60))
69 OUTPUT @Hp87xx;"DISP:
VAL$(INT(Sc*8))

70 OUTPUT @Hp87xx;"DISP:
,"EVAL$ (YO+INT(Sc*50))
71 OUTPUT @Hp87xx;"DISP:
VAL$(INT(Sc*8))

72 OUTPUT @Hp87xx;"DISP:
,"EVAL$ (YO+INT(Sc*40))
73 OUTPUT @Hp87xx;"DISP:
VAL$(INT(Sc*8))

74 OUTPUT @Hp87xx;"DISP:
,"EVAL$ (YO+INT(Sc*30))
75 OUTPUT @Hp87xx;"DISP:
VAL$(INT(Sc*8))

76 OUTPUT @Hp87xx;"DISP:
,"EVAL$ (YO+INT(Sc*20))
77 OUTPUT @Hp87xx;"DISP:
VAL$(INT(Sc*8))

78 OUTPUT @Hp87xx;"DISP:
,"EVAL$ (YO+INT(Sc*10))
79 OUTPUT @Hp87xx;"DISP:
VAL$(INT(Sc*8))

80 OUTPUT @Hp87xx;"DISP:
,"EVAL$ (YO+INT(Sc*80))
81 OUTPUT @Hp87xx;"DISP:
VAL$(INT(Sc*13))

82 OUTPUT @Hp87xx;"DISP:
,"EVAL$ (YO+INT(Sc*81))
83 OUTPUT @Hp87xx;"DISP:
VAL$(INT(Sc*10))

and scale Sc.

|
|
|
|
! graphics commands.
|

11-14 Example Programs

WIND10O:

WIND10O:

WIND10O:

WIND10O:

WIND10O:

WIND10O:

WIND10O:

WIND10O:

WIND10O:

WIND10O:

WIND10O:

WIND10O:

WIND10O:

WIND10O:

WIND10O:

WIND10O:

WIND10O:

WIND10O:

WIND10O:

WIND10O:

WIND10O:

WIND10O:

COM /Sys_state/ @Hp87xx,Scode
WIND10O:
WIND10O:

GRAP
GRAP

GRAP

GRAP

GRAP

GRAP

GRAP

GRAP

GRAP

GRAP

GRAP

GRAP

GRAP

GRAP

GRAP

GRAP

GRAP

GRAP

GRAP

GRAP

GRAP

GRAP

GRAP

GRAP

:MOVE
:RECT

:MOVE

:RECT

:MOVE

:RECT

:MOVE

:RECT

:MOVE

:RECT

:MOVE

:RECT

:MOVE

:RECT

:MOVE

:RECT

:MOVE

:RECT

:MOVE

:RECT

:MOVE

:RECT

:MOVE

:RECT

This subroutine draws the HP 8711 at origin X0,YO
The drawing is done to the IBASIC
! display (window 10) using the HP 8711’s user

"EVAL$(X0)&" ,"&VAL$(YO)
"gVAL$ (INT(Sc*350))&","

"EVALS (XO+INT(Sc*10))&",
"gVAL$ (INT(Sc*180))&","
"gEVALS (XO+INT(Sc*200))&"
"VAL$ (INT(Sc*15))&","&
"gEVALS (XO+INT(Sc*200))&"
"VAL$ (INT(Sc*15))&","&
"gEVALS (XO+INT(Sc*200))&"
"VAL$ (INT(Sc*15))&","&
"gEVALS (XO+INT(Sc*200))&"
"VAL$ (INT(Sc*15))&","&
"gEVALS (XO+INT(Sc*200))&"
"VAL$ (INT(Sc*15))&","&
"gEVALS (XO+INT(Sc*200))&"
"VAL$ (INT(Sc*15))&","&
"gEVALS (XO+INT(Sc*200))&"
"VAL$ (INT(Sc*15))&","&
"gEVALS (XO+INT(Sc*200))&"
"VAL$ (INT(Sc*15))&","&
"EVALS (XO+INT(Sc*265))&"
"EVAL$ (INT(Sc*70))&","&
"EVALS (XO+INT(Sc*230))&"

"EVAL$ (INT(Sc*20))&","&

84 OUTPUT @Hp87xx;"DISP:WIND10:GRAP:MOVE "&VAL$ (XO+INT(Sc*275))&"
,"&VAL$ (YO+INT (Sc*85))

85 OUTPUT @Hp87xx;"DISP:WIND10:GRAP:RECT "&VAL$(INT(Sc*50))&","&
VAL$(INT(Sc*3))

86 OUTPUT @Hp87xx;"DISP:WIND10:GRAP:MOVE "&VAL$ (XO+INT(Sc*295))&"
,"&VAL$ (YO+INT (Sc*50))

87 OUTPUT @Hp87xx;"DISP:WIND10:GRAP:CIRC "&VAL$(INT(Sc*8))

88 OUTPUT @Hp87xx;"DISP:WIND10:GRAP:MOVE "&VAL$ (XO+INT(Sc*245))&"
,"&VAL$ (YO+INT (Sc*15))

89 OUTPUT @Hp87xx;"DISP:WIND10:GRAP:CIRC "&VAL$(INT(Sc*4))

90 OUTPUT @Hp87xx;"DISP:WIND10:GRAP:MOVE "&VAL$ (XO+INT(Sc*325))&"
,"&VAL$ (YO+INT (Sc*15))

91 OUTPUT @Hp87xx;"DISP:WIND10:GRAP:CIRC "&VAL$(INT(Sc*4))

92 SUBEND

93 l-m—mm e -

94 SUB Draw_dut (INTEGER XO,INTEGER YO,REAL Sc)

95 COM /Sys_state/ @Hp87xx,Scode

96 l--——— -

97 !

98 ! This subprogram draws a device under test (dut)

99 ! and connects it to the HP 8711 that was drawn
100 ! with an origin at X0,Y0 and a scale of Sc.
101 !

102 !'-=--—mmm e

103 OUTPUT @Hp87xx;"DISP:WIND10:GRAP:MOVE "&VAL$ (XO+INT(Sc*245))&"
,"&VAL$ (YO+INT (Sc*15))

104 OUTPUT @Hp87xx;"DISP:WIND10:GRAP:DRAW "&VAL$ (XO+INT(Sc*245))&"
,"&VAL$ (YO-INT (Sc*20))

105 OUTPUT @Hp87xx;"DISP:WIND10:GRAP:DRAW "&VAL$ (XO+INT(Sc*265))&"
,"&VAL$ (YO-INT (Sc*20))

106 OUTPUT @Hp87xx;"DISP:WIND10:GRAP:MOVE "&VAL$ (XO+INT(Sc*265))&"
,"&VALS (YO-INT (Sc*22))

107 OUTPUT @Hp87xx;"DISP:WIND10:GRAP:RECT "&VAL$(INT(Sc*40))&","&
VAL$(INT(Sc*4))

108 OUTPUT @Hp87xx;"DISP:WIND10:GRAP:MOVE "&VAL$ (XO+INT(Sc*305))&"
,"&VAL$ (YO-INT (Sc*20))

109 OUTPUT @Hp87xx;"DISP:WIND10:GRAP:DRAW "&VAL$ (XO+INT(Sc*325))&"
,"&VAL$ (YO-INT (Sc*20))

110 OUTPUT @Hp87xx;"DISP:WIND10:GRAP:DRAW "&VAL$ (XO+INT(Sc*325))&"
,"&VAL$ (YO+INT (Sc*15))

111 SUBEND

112 !

113 skokokokokokokok s okok ook sk skok ok okok ook ok s ok sk ok ok sk ok ok o skok sk ok sk sk ok sk ok ok s ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok
114 ! Iden_port: Identify io port to use

115V skokokokokokokok s okok s ok sk skook ok okok ook ok s ok sk ok ok ok ok ok o skok sk ok sk sk ok sk ok ok sk ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok
116 SUB Iden_port

117 COM /Sys_state/ @Hp87xx,Scode

118 !

119 IF POS(SYSTEM$('"SYSTEM ID"),"HP 87")<>0 THEN

120 ASSIGN @Hp87xx TO 800

121 Scode=8

122 ELSE

123 ASSIGN @Hp87xx TO 716

124 Scode=7

125 END IF

Example Programs 11-15

126 !
127 SUBEND !Iden_port
128 !

11-16 Example Programs

DUALCTRL — Two controller operation

10 o
20 !

30 ! BASIC program: DUALCTRL - Two controller operation
40 !

50 ! This program is designed to run on an external

60 ! controller. It demonstrates how the external

70 ! controller and HP IBASIC can work together. The

80 ! program downloads an IBASIC program to the HP 871X

920 ! and runs it twice. After each run, two program

100 ! variables are read from the analyzer and displayed.
110 !

120 o
130 !

140 ! Initialize the variables for the interface select

150 ! code and the HP-IB address of the HP 871X.

160 !

170 Scode=7

180 Address=16

190 Na=Scodex100+Address

200 !

210 ! Prepare the analyzer for remote operation, clear
220 ! the analyzer’s input/output queues, the display
230 ! and scratch any program in the buffer.

240 !

250 CLEAR Na

260 CLEAR SCREEN

270 OQUTPUT Na;'"PROG:DEL:ALL"

280 !

290 ! Download the program as an indefinite block length
300 ! data transfer, terminate the data transfer by

310 ! sending a carriage return and EOI.

320 !

330 DISP '"Downloading the program..."

340 ASSIGN @Prog TO Na

350 OUTPUT @Prog;"PROG:DEF #0";

360 OUTPUT @Prog;'10 COM INTEGER Times_run,Test$[10]"

370 OUTPUT @Prog;"20 Times_run=Times_run+1"

380 OUTPUT @Prog;"30 IF Times_run=1 THEN Test$=""PASS"""

390 OUTPUT @Prog;"40 IF Times_run=2 THEN Test$=""FAIL"""

400 OUTPUT @Prog;"50 FOR I= 1 TO 20"

410 OUTPUT @Prog;"60 BEEP"

420 OUTPUT @Prog;"70 NEXT I"

430 OUTPUT @Prog;"80 END"

440 OUTPUT @Prog;CHR$(10) END

450 !

460 ! Initialize interrupt registers - clear the status byte,
470 ! the service request enable register, the standard event
480 ! enable register, and preset the other status registers.
490 !

500 OUTPUT Na;'"*CLS"

510 OUTPUT Na;'"*SRE 0"

520 OUTPUT Na;'"*ESE 0"

530 OUTPUT Na;'"STAT:PRES"

Example Programs

1117

540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080

Set up the status registers to generate an interrupt
on negative transition of the Program Running bit
(bit 14 in the Operational Status register).

OUTPUT Na;'"STAT:0PER:NTR #HFFFF"
OUTPUT Na;'"STAT:0PER:ENAB 16384"
OUTPUT Na;"*CLS"

OUTPUT Na;'"*SRE 128"

Run the program, read and display the variables.

DISP "Running the program..."
OUTPUT Na;"PROG:EXEC ’RUN’"
Display_res(Na,Scode)

OUTPUT Na;"PROG:EXEC ’RUN’"
Display_res(Na,Scode)

[}

Return the analyzer to front panel control, this
is the end of the program.

LOCAL Na
DISP "DONE !'"
END

|
! This subprogram waits for an SRQ interrupt to

! signal that an IBASIC program running on the

! analyzer has finished. It then reads and clears
! the HP-IB status registers. The values of two

! program variables are then read and displayed.

|

|
! Setup branching to an interrupt handling routine,
! enable the interrupts and wait until one occurs.

ON INTR Scode GOTO Read_results
ENABLE INTR Scode;2

Idle: GOTO Idle
Read_results: !

1
! The program has finished running - read and clear
|

the operational status register and status byte.
|

A=SPOLL(Na)

OUTPUT Na;"STAT:0PER:EVENT"
ENTER Na;Event

OUTPUT Na;"*CLS"

]

! Read a numeric variable (Times_run) and a string

11-18 Example Programs

1090
1100
1110
1120
1130
1140
1150
1160
1170

! variable (Test$) and display the values.

]

OUTPUT Na;"PROG:NUMB? ’Times_run’"

ENTER Na USING "X,K";Times_run

OUTPUT Na;"PROG:STR? ’Test$’"

ENTER Na USING "X,K";Test$

DISP "Times_run: ";Times_run,'"Test$: ";Test$

PRINT "Times_run: ";Times_run,"Test$: ";Test$
SUBEND

Example Programs

11-19

REPORT — Using the parallel port

10 o
20 !

30 ! IBASIC program: REPORT - Using the parallel port

40 !

50 ! This program uses the 871X to generate a report,

60 ! making a hardcopy on a printer connected to the

70 ! parallel port. It uses a subprogram to send the

80 ! output to the parallel port one line at a time.

920 !

100 ! This example uses five different font types that

110 ! may or may not be supported for your printer.

120 ! These character fonts are available for HP LaserJet
130 ! printers. Refer to your printer manual to modify

140 ! the example fonts for your printer.

150 !

160 o
170 !

180 ! Assign an I/0 path name for the internal bus and

190 ! declare and initialize variables.

200 !

210 COM /Cset/ Block$[50],Title$[50],S1lant$[50] ,Banner$[50] ,Medium$ [50]
220 ASSIGN @Rfna TO 800
230 Esc$=CHR$(27)

240 !

250 ! Preset the analyzer, put it in Trigger HOLD mode,
260 ! allocate the full IBASIC display and clear the
270 ! screen.

280 !

290 OUTPUT @Rfna;"SYST:PRES;*WAI"

300 OUTPUT @Rfna;"ABOR; :INIT:CONT OFF;*WAI"
310 OUTPUT @Rfna;"DISP:PROG FULL"

320 CLEAR SCREEN

330 !

340 ! Define the escape sequence for each font that is
350 ! used. Refer to your printer manual.

360 !

370 Block$=Esc$&"&100"&Esc$&" (8U"&Esc$&" (s1p10h12v0s0bOT"
380 Title$=Esc$&"&100"&Esc$&" (8U"&Esc$&'" (s1p8h12v0s0ObOT"
390 Slant$=Esc$&"&100"&Esc$&" (7J"&Esc$&" (sOp6h14v1s0bOT"
400 Banner$=Esc$&"&100"&Esc$&" (7J"&Esc$&" (sOp4h24v0s0bOT"
410 Medium$=Esc$&"&100"&Esc$&" (7J"&Esc$&" (sOp8h14v0s0bOT"
420 !

430 ! Select the font to use writing the company name
440 ! and address, send the company name and address.
450 !

460 CALL Send_line(Title$,1)

470 CALL Send_line("COMPANY NAME",1)

480 CALL Send_line("CITY, STATE, COUNTRY",1)
490 CALL Send_line(" ",1)

500 !
510 ! Select the font to use writing the device name,
520 ! send the device name.

11-20 Example Programs

530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050
1060
1070

CALL Send_line(Banner$,1)

CALL Send_line(" _",0)

CALL Send_line(" _",1)

CALL Send_line(" ",1)

CALL Send_line(" ",1)

CALL Send_line(" BPF-175 Bandpass Filter",1)
CALL Send_line(" ",1)

CALL Send_line(" ",1)

CALL Send_line(" _",0)

CALL Send_line(" _",1)

CALL Send_line(" ",1)

]

! Select the font to use writing the device
! specifications, send the information.

]

CALL Send_line(Slant$,1)

CALL Send_line(" ",1)

CALL Send_line("PASS BAND (MHZ) 3 dB 60 +/- 5",1)
CALL Send_line(" ",1)

CALL Send_line(" 20 dB 90 +/- 5",1)
CALL Send_line(" ",1)

CALL Send_line(" 40 dB 120 +/- 5",1)
CALL Send_line(" ",1)

CALL Send_line("SWR PASSBAND (typical) 1.8:1",1)

CALL Send_line(" ",1)

CALL Send_line("SWR STOPBAND (typical) 1.8:1",1)

CALL Send_line(" ",1)

CALL Send_line("Cost per unit: 36.95",1)

]

! Select the font to use for the performance data

! title, send the title.

]

CALL Send_line(Block$,1)

CALL Send_line(" ".0)

CALL Send_line(" Transmission Characteristics',1)
]

! Return the display to the analyzer.
|

OUTPUT @Rfna;"DISP:PROG OFF"

|
! Setup the device measurement. This example
! measures the transmission response of a

! bandpass filter at 175 MHz.

|

OQUTPUT @Rfna;"DISP:ANN:FREQ1:MODE SSTOP"

QUTPUT @Rfna;"SENS1:FREQ:STAR 10 MHz;STOP 400 MHz;*WAI"

OQUTPUT @Rfna;"DISP:WIND1:TRAC:Y:PDIV 20 dB;RLEV -50 dB;RP0OS 5"

OQUTPUT @Rfna;"DISP:ANN:TITL ON;TITL1:DATA ’HP 8711 RF NETWORK ANALYZER’"
|

! Take a measurement sweep and wait for it to

! complete. Perform a -3 dB bandwidth search.

|

OUTPUT @Rfna;"INIT1;*0PC?"

ENTER @Rfna;0pc

Example Programs 11-21

1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600

OUTPUT @Rfna;"CALC1:MARK1 ON;MARK:BWID -3"

Se

Se

lect the parallel port and the printer’s
ntrol language as the hardcopy device.
t the printer resolution and margins -

turn off automatic form feed.

!
!
! co
!
!
[}

QUTP
QUTP
QUTP
QUTP
QUTP
|

! Se

UT @Rfna;"HCOP:DEV:LANG PCL;PORT CENT"
UT @Rfna;"HCOP:DEV:RES 300"

UT @Rfna;"HCOP:PAGE:MARG:LEFT 40"

UT @Rfna;"HCOP:PAGE:WIDT 110"

UT @Rfna;"HCOP:ITEM1:FFE:STAT OFF"

nd the measurement data (graph and marker

! values) to the printer.

]
QUTP
]
! Se

UT @Rfna;"HCOP"

lect the fonts and send the "footer"

! information for the report.

|
CALL
CALL
CALL
CALL
CALL
CALL
CALL
|
! Se
!
WRIT
END
SUB
|-

Send_line(Banner$,1)

Send_line(" ",1)

Send_line(" ",1)

Send_line("IN STOCK IMMEDIATE DELIVERY!",1)
Send_line(Medium$,1)

Send_line(" ".0)

Send_line("For more information: Call 1-800-Filter",1)

nd a form feed to the printer.

EIO 15,0;12

Send_line(String$,INTEGER Crlf)

The subprogram sends a string to the parallel port
(I/0 port 15). The Crlf flag determines whether

a carriage return (ASCII 13) and line feed (ASCII
10) are needed at the end of the string.

INTEGER Length

Le
FO

ngth=LEN(String$)
R I=1 TO Length
WRITEIO 15,0;NUM(String$[I;1])

NEXT I

IF

Crlf=1 THEN
WRITEIO 15,0;10
WRITEIO 15,0;13

END IF
SUBEND

11-22 Example Programs

TRICTRL — External controller with local IBASIC controllers

10

20

30

40

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530

BASIC program: TRICTRL - Three controller operation
One controller, Two IBASIC instruments

This program is designed to run on an external
controller. It demonstrates how the external
controller and multiple instruments running IBASIC
programs can be synchronized to work together.

Run this program on an external controller. Two HP871x
are needed. Set one HP871x to address 16. Set the
other to address 18. Connect HP-IB cables between

the controller and the two analyzers.

The program downloads IBASIC programs to two HP 871Xs,
then runs each program. Pressing softkey 1 on either
intstrument triggers a sweep. Pressing softkey 3 on
either instrument will trigger an SRQ. The controller
will poll the instrument over the HP-IB bus, determine
which instrument has requested service, log the SRQ,
and release the instrument for more measurements by
setting the IBASIC variable Ctrl_flag.

Initialize the variables for the interface select
code and the HP-IB address of the HP 871X.

Scode=7

Address1=16
Address2=18
Nal=Scodex100+Addressi
Na2=Scodex100+Address?2
Dev_count1=0
Dev_count2=0

Prepare the analyzer for remote operation, clear
the analyzer’s input/output queues and scratch
any program in the buffer.

ABORT 7
CLEAR Nail
CLEAR Na2
CLEAR SCREEN

OUTPUT Nal;"SYST:PRES;*0PC?" ! Preset analyzer #1
ENTER Nai;0pc

OUTPUT Na2;"SYST:PRES;*0PC?" ! Preset analyzer #2
ENTER Na2;0pc

OUTPUT Nal;"PROG:STAT STOP" ! Stop all programs
REMOTE Nail

QUTPUT Nal;"PROG:DEL:ALL" ! Scratch the programs

Example Programs

11-23

540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080

OUTPUT Na2;"PROG:STAT STOP"
REMOTE Na2
OUTPUT Na2;"PROG:DEL:ALL"

QUTPUT Nal;"*CLS"

QUTPUT Nal;"*SRE Q"

QUTPUT Nal;"xESE Q"

QUTPUT Nal;"STAT:PRES;*0PC?"
ENTER Nai;0pc

OUTPUT Na2;"*CLS"

QUTPUT Na2;"*SRE Q"

QUTPUT Na2;"*ESE Q"

QUTPUT Na2;"STAT:PRES;*0PC?"
ENTER Na2;0pc

|

ON INTR 7,2 GOSUB User_srq ! Define the

Initialize interrupt registers - clear the status byte,
the service request enable register, the standard event
enable register, and preset the other status registers.

SRQ service routine

GOSUB Usermask ! Enable the user SRQ

ENABLE INTR 7;2

Download the program as an indefinite block length

sending a carriage return and EOI.

|
!
! data transfer, terminate the data transfer by
|
|

DISP "Downloading the programs..."
ASSIGN @Prog TO Nal

GOSUB Dnld

ASSIGN @Prog TO Na2

GOSUB Dnld

|

! Run the programs

DISP "Running the programs..."
OUTPUT Nal;"PROG:STAT RUN;*0OPC?"
ENTER Nai;0pc

|

OUTPUT Na2;"PROG:STAT RUN;*0PC?"
ENTER Na2;0pc

|

BEEP

DISP "Waiting for srq..."

|

LOCAL Nail

LOCAL Na2
Idle:GOTO Idle

STOP

! Enable SR(Qs to occur when the user_srq bit is

Usermask: !

QUTPUT Nal;"*ESE 64;*SRE 32"
QUTPUT Nal;"*x0OPC?"

ENTER Nai;0pc

QUTPUT Na2;"*ESE 64;*SRE 32"

11-24 Example Programs

set

1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630

QUTPUT Na2;"*0PC?"
ENTER Na2;0pc

RETURN

User_srq:

! Th

Stb=SPOLL(Na1l)
IF (BINAND(Stb,64)<>0) THEN
OUTPUT Nal;"*ESR?"
ENTER Nal;Stat
Dev_countl1=Dev_counti+1
PRINT "Inst:'",Nal,"Dev:",Dev_countl

QUTPUT Nal;"PROG:NUMB ’Ctlr_flag’,0"

LOCAL Nai

ELSE

Stb=SPOLL(Na2)
IF (BINAND(Stb,64)<>0) THEN
OUTPUT NaZ2;"*ESR?"
ENTER Na2;Stat
Dev_count2=Dev_count2+1
PRINT "Inst:",Na2,'"Dev:",Dev_count2

QUTPUT Na2;"PROG:NUMB ’Ctlr_flag’,0"

LOCAL Na2
END IF

END IF

[}

ENABLE
RETURN

[}

Dnld: !
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT

INTR 7

Download e
@Prog;'"PRO
Q@Prog;"10
Q@Prog;"20
Q@Prog;"30
Q@Prog;"40
Q@Prog;"50
Q@Prog;"60
Q@Prog;"70
Q@Prog;"80
Q@Prog;"90
@Prog;"100
@Prog;"110
@Prog;"120
@Prog;"130
@Prog;"140
@Prog;"150
@Prog;"160
@Prog;"170
@Prog;"180
Q@Prog;CHR$
@Prog;"*op

ENTER @Prog;0Opc

RETURN
END

is routine is called to service SRQs
! Poll the first instrument

! Clear the IBASIC flag

! Poll the second instrument

! Clear the IBASIC flag

xample program to analyzer

G:DEF #0'";

COM INTEGER Ctlr_flag"

QUTPUT 800;""ABOR;:INIT1:CONT OFF"""

ON KEY 1 LABEL ""Test 1"" GOSUB Do_test"

ON KEY 3 LABEL ""Done Test"" GOSUB Send_srq"
Idle:GOTO Idle"

STOP"
Send_srq:
BEEP"
Ctlr_flag=1"

QUTPUT 800;""SYST:KEY:USER"""

DISP ""Waiting for CTLR..."""

Stall: IF Ctlr_flag=1 THEN GOTO Stall"
DISP non o oon

RETURN"

DO_TEST: OUTPUT 800;""INIT1;*0PC?"""
ENTER 800;0pc"

RETURN"

END"

(10) END

c?h

Example Programs

11-25

UPLOAD — Upload program from analyzer

10 o
20 !

30 ! BASIC program: UPLOAD - Upload program from HP 871X
40 !

50 ! This program uploads the current IBASIC program

60 ! in the HP 871X’s program buffer to an ASCII file

70 ! on the controller’s current mass storage device.

80 !

920 o
100 !

110 ! Assign an I/0 path name to the HP 8711, initialize
120 ! the variables, and clear the analyzer’s input/output
130 ! queues.

140 !

150 ASSIGN @Rfna TO 716

160 DIM Prog_line$[256]

170 CLEAR G@Rfna

180 !

190 ! Enter the name of the file to be created.

200 !

210 INPUT "ENTER NAME OF FILE TO UPLOAD PROGRAM TO ",Filename$

220 PRINT Filename$

230 !

240 ! Query the HP 8711 for the contents of its

250 ! program buffer.

260 !

270 OUTPUT @Rfna;"PROG:DEF?"

280 !

290 ! Read the block header, the number of digits in

300 ! the file size, and the file size.

310 !

320 ENTER @Rfna USING "#,A,D";Prog_line$,Ndigits

330 ENTER @Rfna USING "#,"&VAL$(Ndigits)&"D";Nbytes

340 !

350 ! Create the target ASCII file on the current mass

360 ! storage device and assign it an I/0 path name.

370 !

380 Openfile(@File,Filename$,Nbytes)

390 ASSIGN @File TO Filename$;FORMAT ON

400 !

410 ! Read the program one line at a time, and write

420 ! it to the new file. Print each line on the
|
|

430 display as it is read.
440 !

450 LOOP

460 ENTER @Rfna;Prog_line$
470 EXIT IF LEN(Prog_line$)=0
480 PRINT Prog_line$

490 OUTPUT Q@File;Prog_line$
500 END LOOP

510 !

520 ! Close the new file.

530 !

11-26 Example Programs

540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770

ASSIGN @File TO =*
END

This subprogram creates an ASCII file with the
name ’Filename$’ of the specified size ’Fsize’.
Error trapping is used to detect any errors in
opening the file. If the controller is HP IBASIC
for Windows a DOS file is created, otherwise the
LIF format is used.

ON ERROR GOTO Openerr
IF SYSTEM$("SYSTEM ID")="IBASIC/WINDOWS" THEN
CREATE Filename$,1
ELSE
IF Fsize MOD 256>0 THEN Fsize=Fsize+256
CREATE ASCII Filename$,Fsize DIV 256
END IF
[}
Openerr:IF ERRN<>54 THEN PRINT ERRM$
SUBEND

Example Programs

11-27

USERBEG — Set up user-defined User BEGIN softkeys

10

20

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330

'Filename: USERBEG
]

Description: Program to set up the User Begin softkeys.

A) This program creates User Begin softkeys which allow
the user to: Save or Recall one of two instrument
states, set the marker to maximum, set the scale/div,
and compute some measurement statistics at the marker.

B) In order to run this program, do the following -
1) Load this program into the 871x

2) Press the "BEGIN" (hardkey) and the "User Begin on/0FF" (softkey).

|

|

|

|

|

|

|

|

|

|

1

! 3) The "User Begin" function is now enabled (which runs this
! program). This program re-defines the softkeys displayed
! whenever the BEGIN hardkey is pressed. The functions
! performed by these softkeys are defined by this

|

|

|

|

|

|

|

|

|

|

|

program. Note that all front panel keys in the analyzer are

active (as if there were no program running).

4) Use the instrument as you normally would. However, when
the BEGIN hardkey is pressed, the menu defined
by this program will be displayed instead of the usual
BEGIN softkeys, until the "User Begin ON/off" (softkey)
is pressed, turning off the "User Begin' mode.

ook ok ok ok o ok ok ok ok ook s ok sk sk ok s ok sk ok ok ok s ok sk ok ok sk ok ok sk ok ok sk ok sk s ok ok sk ok sk okok ok sk ok sk ok ok
Initialize

User_begin:ASSIGN @Hp871x TO 800 'REQUIRED - first line for

User Begin program

340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550

]
REAL Vert_scale,Mrkr_data(1:30),Mrkr_mean,Mrkr_sdev

REAL Mrkr_max,Mrkr_min,I

DIM Message$[124]

|

! ___

! Write the softkey labels. Maximum label length=20characters
|

OUTPUT @Hp871x;"DISP:MENU2:KEY8 ’’;*WAI" !clear all labels
OUTPUT @Hp871x;"DISP:MENU2:KEY1 ° Save State 1’ ;*WAI"
OUTPUT @Hp871x;"DISP:MENU2:KEY2 ° Recall State 1’ ;*WAI"
OUTPUT @Hp871x;"DISP:MENU2:KEY3 ° Save State 27 ;*WAI"
OUTPUT @Hp871x;"DISP:MENU2:KEY4 ° Recall State 2’ ;*WAI"

QUTPUT @Hp871x;"DISP:MENU2:KEY5 ’Mkr -> Max’;*WAI"
OUTPUT @Hp871x;"DISP:MENU2:KEY6 ’Scale/Div’;*WAI"
OUTPUT @Hp871x;"DISP:MENU2:KEY7 ’ MarkerStatistics’ ;*WAI"
|

User_pause:PAUSE !pause the program until a softkey is pressed
GOTO User_pause !return to program pause after a softkey press
|

! Define softkey routines

11-28 Example Programs

560 !

570 User_keyl: ! Define softkey 1: save state 1

580 OQUTPUT @Hp871x;"MMEM:STOR:STAT 1,’MEM:UBEGN1.STA’" !save state 1
590 GOTO User_pause !return to softkey loop

600 !

610 User_key2: ! Define softkey 2: recall state 1

620 OQUTPUT @Hp871x;"MMEM:LOAD:STAT 1,’MEM:UBEGN1.STA’" I!recall state 1
630 GOTO User_pause !return to softkey loop

640 !

650 User_key3: ! Define softkey 3: save state 2

660 OUTPUT @Hp871x;"MMEM:STOR:STAT 1,’MEM:UBEGN2.STA’" I!save state 2
670 GOTO User_pause !return to softkey loop

680 !

690 User_key4: ! Define softkey 4: recall state 2

700 OQUTPUT @Hp871x;"MMEM:LOAD:STAT 1,’MEM:UBEGN2.STA’" !recall state 2
710 GOTO User_pause !return to softkey loop

720 !

730 User_key5: ! Define softkey 5: set marker to max

740 OUTPUT @Hp871x;"CALC1:MARK:FUNC MAX" 'marker -> max

750 GOTO User_pause

760 !

770 User_key6: ! Define softkey 6: adjust the scale, dB/Div,

of the trace
780 INPUT "Enter the scale (dB/Div)",Vert_scale l!ask user for scale
790 OUTPUT @Hp871x;"DISP:WIND1:TRAC:Y:PDIV "&VAL$(Vert_scale)
!set the scale
800 GOTO User_pause
]

810 !

820 User_key7: ! Define softkey 7: compute statistics for marker.

830 OUTPUT @Hp871x;"DISP:ANN:MESS:DATA ’Computing marker statistics...’"

840 OUTPUT @Hp871x;"CALC1:MARK1 ON" !ensure marker is on

850 FOR I=1 TO 30 !read marker 30 times

860 OQUTPUT @Hp871x;"CALC1:MARK1:Y?" !get marker reading

870 ENTER @Hp871x;Mrkr_data(I)

880 NEXT I

890 Mrkr_mean=SUM(Mrkr_data)/30 !compute mean

900 !

910 Mrkr_sdev=0 !initialize standard deviation

920 Mrkr_min=Mrkr_data(1) linitialize min

930 Mrkr_max=Mrkr_data(1l) linitialize max

940 FOR I=1 TO 30 !'compute std dev, min, max

950 Mrkr_sdev=NMrkr_sdev+(Mrkr_data(I)-Mrkr_mean)”2 !sum squares of deviation
960 Mrkr_min=MIN(Mrkr_min,Mrkr_data(I)) 1find min

970 Mrkr_max=MAX (Mrkr_max,Mrkr_data(I)) 1find max

980 NEXT I

990 Mrkr_sdev=SQRT(Mrkr_sdev/29) !finish computation of std dev

1000 !

1010 Message$="Marker Statistics:"&CHR$(10) '1st line of message
1020 Message$=Message$&" Mean ="&VAL$(Mrkr_mean)&CHR$(10) !2nd line of message
1030 Message$=Message$&" Min ="&VAL$(Mrkr_min)&CHR$(10) 13rd line of message
1040 Message$=Message$&" Max ="&VAL$(Mrkr_max)&CHR$(10) '4th line of message

1050 Message$=Message$&" Standard Deviation = "&VAL$(Mrkr_sdev)

15th line of message
1060 OUTPUT @Hp871x;"DISP:ANN:MESS:DATA ’"&Message$&'"’, MEDIUM" !display message
1070 GOTO User_pause !return to softkey loop

Example Programs 11-29

1080 !
1090 END

11-30 Example Programs

USERBEG1 — The default User BEGIN program

10 P —
20 !

30 ! BASIC program: USERBEG1

40 !

50 ! This is the default User Defined BEGIN program. This program
60 ! will automatically install if the [User BEGIN] key is
70 ! selected, and a program has not been previously loaded.
80 !

90 ! The following line is required. DO NOT REMOVE!

100 User _begin:ASSIGN @Rfna TO 800 ! [User Begin] Program
110 !

120 ! To Modify:

130 ! Use [IBASIC][EDIT] or [IBASIC][Key Record]

140 !

150 !

160 ! Delclare storage for variables.

170 DIM Name$[60],Str1$[60],5tr2$[60],5tr3$[60]

180 !

190 ! Clear the softkey labels

200 OUTPUT @Rfna;"DISP:MENU2:KEY8 ’’;*WAI"

210 !

220 ! Re-define softkey labels here.

230 OUTPUT @Rfna;"DISP:MENU2:KEY1 ’*’;*WAI"

240 OUTPUT @Rfna;"DISP:MENU2:KEY2 ’*’;*WAI"

250 OQUTPUT @Rfna;"DISP:MENU2:KEY3 ’Mkr -> Max’;*WAI"

260 QUTPUT @Rfna;"DISP:MENU2:KEY4 °’Title and Clock’;*WAI"
270 OUTPUT @Rfna;"DISP:MENU2:KEY5 ’*’;*WAI"

280 OUTPUT @Rfna;"DISP:MENU2:KEY6 ’*’;*WAI"

290 OUTPUT @Rfna;"DISP:MENU2:KEY7 ’*’;*WAI"

300 !

310 !The following 2 lines are required. DO NOT REMOVE!
320 User_pause:PAUSE

330 GOTO User_pause

340 !

350 User_keyl: ! Define softkey 1 here.

360 GOSUB Message ! Remove this line.

370 GOTO User_pause

380 !

390 User_key2: ! Define softkey 2 here.

400 GOSUB Message ! Remove this line

410 GOTO User_pause

420 !

430 User_key3: ! Example Marker Function

440 OUTPUT QRfna;'"CALC1:MARK1 ON"

450 OUTPUT QRfna;'"CALC1:MARK:FUNC MAX"

460 GOTO User_pause

470 !

480 User_key4: ! Example Title Entry

490 INPUT "Enter Title Line 1. Press [Enter] when done.'",Name$
500 OUTPUT @Rfna;"DISP:ANN:TITL1:DATA ’"&Name$&'’"

510 OUTPUT @Rfna;"DISP:ANN:TITL ON"

520 GOTO User_pause

Example Programs

11-31

530 !

540 User_keyb: ! Define softkey 5 here.

5560 GOSUB Message ! Remove this line.

560 GOTO User_pause

570 !

580 User_key6: ! Define softkey 6 here.

590 GOSUB Message ! Remove this line.

600 GOTO User_pause

610 !

620 User_key7: ! Define softkey 7 here.

630 GOSUB Message ! Remove this line.

640 GOTO User_pause

650 !

660 Message: !

670 Str1$="This key is programmable."

680 Str2$="To modify, select"

690 Str3$="[System Options], [IBASIC], [Edit]."
700 OUTPUT @Rfna;"DISP:ANN:MESS ’"&Str1$&CHR$(10)&Str2$&CHR$(10)&Str3$e"’

, MEDIUM"
710 RETURN
720 !

730 END

11-32 Example Programs

USERBEG2 — Fast recall of instrument states

10

20

30

40

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530

BASIC program: USERBEG2

|
|
!
! This is an example User Defined BEGIN program. This program
! will recall the named file. Demonstrates fast recall
! of a previously defined files SETUP1, SETUP2, and SETUP3.
|
! The following line is required. DO NOT REMOVE!
User_begin:ASSIGN @Rfna TO 800 ! [User Begin] Program

|
To Modify:
Use [IBASIC][EDIT] or [IBASIC][Key Record]

Delclare storage for variables.
DIM Name$[60],Str1$[60],Str2$[60],Str3$[60]
|
! Clear the softkey labels
QUTPUT @Rfna;"DISP:MENU2:KEY8 ’’;*WAI"
|
! Re-define softkey labels here.
QUTPUT @Rfna;"DISP:MENU2:KEY1 ’Setupl’;*WAI"
QUTPUT @Rfna;"DISP:MENU2:KEY2 ’Setup2’;*WAI"
QUTPUT @Rfna;"DISP:MENU2:KEY3 ’Setup3’;*WAI"
OUTPUT @Rfna;"DISP:MENU2:KEY4 ’*’;*WAI"
OUTPUT @Rfna;"DISP:MENU2:KEY5 ’*’;*WAI"
OUTPUT @Rfna;"DISP:MENU2:KEY6 ’*’;*WAI"
OUTPUT @Rfna;"DISP:MENU2:KEY7 ’*’;*WAI"
|
!The following 2 lines are required. DO NOT REMOVE!
User_pause:PAUSE
GOTO User_pause
|

User_keyl: ! Define softkey 1 here.
QUTPUT @Rfna;"MMEM:LOAD:STAT 1,’MEM:SETUP1’"
GOTO User_pause
|

User_key2: ! Define softkey 2 here.
QUTPUT @Rfna;"MMEM:LOAD:STAT 1,’MEM:SETUP2’"
GOTO User_pause
|

User_key3: ! Example Marker Function
QUTPUT @Rfna;"MMEM:LOAD:STAT 1,’MEM:SETUP3’"
GOTO User_pause
|

User_key4: ! Example Title Entry
GOTO User_pause
|

User_keyb: ! Define softkey 5 here.
GOTO User_pause
|

User_key6: ! Define softkey 6 here.

Example Programs

11-33

540 GOTO User_pause

550 !

560 User_key7: ! Define softkey 7 here.
570 GOTO User_pause

580 !

590 END

11-34 Example Programs

USER _BIT — Using the USER bit

10

20

30

40

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530

IBASIC program: USER_BIT - Using the USER bit

IBASIC’s graphics commands are used to draw the

|
|
!
! This program reads and writes to the USER bit.
|
! USER bit value to the display.

|

|
! Assign an I/0 path name to the internal bus and
! initialize variables.

|

ASSIGN @Rfna TO 800

INTEGER Beeper,Count

Count=0

Beeper=0

|

! Preset the analyzer, setup measurement and display
! parameters for a measurement and put the analyzer
! in Trigger HOLD mode.

|

QUTPUT @Rfna;"SYST:PRES;*WAI"

OQUTPUT @Rfna;"DISP:ANN:FREQ1:MODE SSTOP"

OQUTPUT @Rfna;"SENS1:FREQ:STAR 100 MHz;STOP 400 MHz;*WAI"
OQUTPUT @Rfna;"DISP:WIND1:TRAC:Y:PDIV 20 dB;RLEV -60 dB;RP0OS 5"
OUTPUT @Rfna;"SENS1:SWE:POIN 101;TIME .1 s;*WAI"

OUTPUT @Rfna;"ABOR;:INIT1:CONT OFF;*WAI"

|

! Wait for all the setup operations to be complete

! before continuing the program.

|

OUTPUT @Rfna;"*0PC?"

ENTER @Rfna;0pc

|

! Allocate the lower display partition.
|

QUTPUT @Rfna;"DISP:PROG LOW"

|

! Setup a softkey menu to enable and disable the

! beeper. Clear the analyzer’s input/output queues.

|

ON KEY 1 LABEL "Beep Enable" GOSUB Beep_on

ON KEY 2 LABEL "Beep Disable" GOSUB Beep_off

CLEAR QRfna

|

! Trigger 100 sweeps. Beep (if the beeper flag is set)
! and toggle the USER bit after each sweep.

|

DISP "USER bit example program. End of sweep toggles USER bit."
PRINT "Draw the end of sweep USER bit value..."

MOVE 0,20

FOR I=1 TO 100

Example Programs

11-35

540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950

OUTPUT @Rfna;"INIT1;*0PC?"

ENTER @Rfna;0pc

GOSUB Toggle
NEXT I
DISP "End program'
STOP
|
! The 0dd flag’s value alternates between 1 and O
! depending on the number of sweeps that have been
! taken. It is the value that is written to the
! USER bit.
|

Toggle: !

IF 0dd=0 THEN
WRITEIO 15,1;0
0dd=1
ELSE
WRITEIO 15,1;1
0dd=0
END IF
IF Beeper=1 THEN
BEEP
END IF
|
! Read the value of the USER bit and draw it to the
! IBASIC display.
|
Val=READIO(15,1)
Val=Valx*12
DRAW 6%(I-1),Val+20
DRAW 6%I,Val+20
RETURN
|
! These two subroutines set a flag that is used
! to turn on or off the beeper.
|

Beep_on: Beeper=1

RETURN

Beep_off: Beeper=0

RETURN
END

11-36 Example Programs

USERKEYS — Customized softkeys

10 o
20 !

30 ! IBASIC program: USERKEYS - Customized softkeys

40 !

50 ! This program provides an example template for use

60 ! in customizing the HP 871X’s softkeys. The example
70 ! demonstrates how to set up six instrument states,

80 ! store them to the analyzer’s internal memory, and

90 ! setup two interactive softkey menus to choose

100 ! between them.

110 !

120 o
130

140 Assign an I/0 path name to the internal bus, preset

|
!
150 ! the analyzer, wait until the preset is complete,
|
|
|

160 turn on Trigger HOLD mode and set the display scale
170 and reference values.
180

190 ASSIGN @Rfna TO 800

200 OQUTPUT @Rfna;"SYST:PRES;*0PC?"

210 ENTER @Rfna;0Opc

220 OUTPUT @Rfna;"ABOR;:INIT1:CONT OFF;*WAI"

230 QUTPUT @Rfna;"DISP:WIND1:TRAC:Y:PDIV 20 dB;RLEV -60 dB;RP0OS 5"
240 !

250 ! Setup six instrument states and store them to the
260 ! internal memory.
270 !

280 GOSUB Save_1

290 GOSUB Save_2

300 GOSUB Save_3

310 GOSUB Save_4

320 GOSUB Save_5

330 GOSUB Save_6

340 !

350 ! Setup the Main Menu keys.
360 !

370 GOSUB Menu_1

380 !

390 ! Wait until a softkey is pressed.
400 !

410 Suspend: !

420 WAIT 100000

430 GOTO Suspend

440 STOP
450 !
460 This subroutine sets up the softkey menus -

480 the second level menu.

490 !

500 Menu_1: BEEP

510 DISP "MAIN MENU"

520 ON KEY 1 LABEL "Setup #1" GOSUB Load_1
530 ON KEY 2 LABEL "Setup #2" GOSUB Load_2

|

470 ! Menul sets up the main menu, Menu2 sets up
|
|

Example Programs 11-37

540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080

ON KEY
ON KEY
ON KEY
RETURN
]

Menu_2:

3 LABEL "Setup #3" GOSUB Load_3
5 LABEL "Autoscale'" GOSUB Autoscale
6 LABEL " Next Menu" GOSUB Menu_2

BEEP

DISP "MORE MENU"

ON KEY
ON KEY
ON KEY
ON KEY
ON KEY
RETURN
[}

! This

1 LABEL "Setup #4" GOSUB Load_4

2 LABEL "Setup #5" GOSUB Load_5

3 LABEL "Setup #6'" GOSUB Load_6

5 LABEL "Autoscale'" GOSUB Autoscale
6 LABEL "Prior Menu" GOSUB Menu_1

subroutine automatically sets the scale and

! reference values of the display.

Autoscale: OUTPUT @Rfna;'"DISP:WIND1:TRAC:Y:AUTO ONCE"

OUTPUT

RETURN
]

These six subroutines each set up the analyzer to
a different measurement and store that setup

©@Rfna;"DISP:WIND2:TRAC:Y:AUTO ONCE"

to the instrument’s internal memory.

|
! make
!
|

Save_1: OUTPUT @Rfna;"SENS1:STAT ON;*WAI"

OUTPUT
OUTPUT
OUTPUT
OUTPUT

RETURN
]

ORfna;"DISP:ANN:FREQ1:MODE SSTOP"

©@Rfna;"SENS1:FREQ:STAR 100 MH=z;STOP 400 MHz;*WAI"

ORfna;"INIT1;*WAI"
ORfna;"MMEM:STOR:STAT 1,’MEM:STATE1.STA’"

Save_2: OUTPUT @Rfna;"SENS2:STAT ON;*WAI"

OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT

RETURN
]

O@Rfna;"SENS2:FUNC ’XFR:POW:RAT 1,0’ ;DET NBAN;*WAI"

O@Rfna;"DISP:ANN:FREQ2:MODE CSPAN"

@Rfna;"SENS2:FREQ:CENT 200 MHz;SPAN 300 MHz;*WAI"

ORfna;"INIT2;*WAI"
ORfna;"MMEM:STOR:STAT 1,’MEM:STATE2.STA’"

Save_3: OUTPUT @Rfna;"CALC2:FORM SWR"

OUTPUT
OUTPUT
OUTPUT

RETURN
]

ORfna;"INIT2;*WAI"
ORfna;"MMEM:STOR:STAT 1,’MEM:STATE3.STA’"
©@Rfna;'"CALC2:FORM MLOG"

Save_4:0UTPUT @Rfna;"SENS2:STAT OFF"

OUTPUT
OUTPUT
OUTPUT

RETURN
]

Save_5:0UTPUT @Rfna;"CALC1:MARK:BWID -3;FUNC:TRAC ON"

OUTPUT
OUTPUT

O@Rfna;"SENS1:SWE:POIN 1601;*WAI"
ORfna;"INIT1;*WAI"
ORfna;"MMEM:STOR:STAT 1,’MEM:STATE4.STA’"

ORfna;"INIT1;*WAI"
ORfna;"MMEM:STOR:STAT 1,’MEM:STATES.STA’"

11-38 Example Programs

1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490

RETURN

Save_6:0UTPUT ORfna;'"SENS1:BWID 250 Hz;*WAI"

OUTPUT @Rfna;"SENS1:SWE:POIN
OUTPUT @Rfna;"INIT1;*WAI"
OUTPUT @Rfna;"MMEM:STOR:STAT
RETURN

101 ;*WATI"

1,’MEM:STATE6.STA"

! These six subroutines each recall one of the
! measurement setups that were stored earlier.
|

Load_1:DISP "Setup 1"
OUTPUT @Rfna;"MMEM:LOAD:STAT
OUTPUT @Rfna;"INIT1;*WAI"
RETURN
|
Load_2:DISP "Setup 2"
OUTPUT @Rfna;"MMEM:LOAD:STAT
OUTPUT @Rfna;"INIT2;*WAI"
RETURN
|
Load_3:DISP "Setup 3"
OUTPUT @Rfna;"MMEM:LOAD:STAT
OUTPUT @Rfna;"INIT2;*WAI"
RETURN
|
Load_4:DISP "Setup 4"
OUTPUT @Rfna;"MMEM:LOAD:STAT
OUTPUT @Rfna;"INIT1;*WAI"
RETURN
|
Load_5:DISP "Setup 5"
OUTPUT @Rfna;"MMEM:LOAD:STAT

OUTPUT @Rfna;"INIT1;*WAI"
RETURN

|
Load_6:DISP "Setup 6"

OUTPUT @Rfna;"MMEM:LOAD:STAT
OUTPUT @Rfna;"INIT1;*WAI"
RETURN

END

1,’MEM:STATE1.STA’ ; *WATI"

1,’MEM:STATE2.STA’ ; *WAT"

1,’MEM:STATE3.STA’ ; *WATI"

1,’MEM:STATE4.STA’ ; *WAT"

1,’MEM:STATES.STA’ ; *WAT"

1,’MEM:STATE6.STA’ ; *WAT"

Example Programs

11-39

USR_FLOC — Fault location measurements

10 P —
20 !

30 ! BASIC program: USR_FLOC

40 !

50 ! Fault Location measurements require option 100.

60 ! User BEGIN requires option 1C2, IBASIC.

70 !

80 !

90 ! This is an example user BEGIN program for fault location.
100 !

110 ! Load this program into the analyzer. Then press [BEGIN]
120 ! [User BEGIN ON].

130 !

140 ! The following line is required. DO NOT REMOVE!

150 User_begin:ASSIGN @Rfna TO 800 ! [User Begin] Program
160 ASSIGN @Hp8712 TO 800

170 !

180 ! To Modify:

190 ! Use [IBASIC][EDIT] or [IBASIC][Key Record]

200 !

210 !

220 ! Delclare storage for variables.

230 DIM Name$[60],Str1$[60],Str2$[60],5tr3$[60]

240 !

250 ! Clear the softkey labels

260 OUTPUT @Rfna;"DISP:MENU2:KEY8 ’’;*WAI"

270 !

280 ! Re-define softkey labels here.

290 OQUTPUT @Rfna;"DISP:MENU2:KEY1 ’Test End of Cable’;*WAI"
300 OUTPUT @Rfna;"DISP:MENU2:KEY2 ’*’;*WAI"

310 OQUTPUT @Rfna;"DISP:MENU2:KEY3 ’Mkr -> Max’;*WAI"

320 OQUTPUT @Rfna;"DISP:MENU2:KEY4 ’Next Peak Left’;*WAI"
330 OQUTPUT @Rfna;"DISP:MENU2:KEY5 ’Next Peak Right’;*WAI"
340 OUTPUT @Rfna;'"DISP:MENU2:KEY6 ’Zoom on Marker’ ; *WAI"
350 OUTPUT @Rfna;"DISP:MENU2:KEY7 ’*’;*WAI"

360 !

370 !The following 2 lines are required. DO NOT REMOVE!
380 User_pause:PAUSE

390 GOTO User_pause

400 !

410 User_key1l: ! Example Set Stop Distance to 1100ft
420 OUTPUT @Hp8712;"SENS1:STAT ON; *WAI"

430 OUTPUT @Hp8712;"SENS1:FUNC ’FLOC 1,0’ ;DET NBAN; *WAI"
440 OUTPUT @Hp8712;"SENS1:DIST:STOP 1100; *opc?"

450 ENTER @Hp8712;0pc

460 OUTPUT @Hp8712;"SENS1:CORR:RVEL:COAX 0.89"

470 OUTPUT @Hp8712;"DISP:WIND1:TRAC:Y:AUTO ONCE"

480 GOTO User_pause

490 !

500 User_key2: ! Define softkey 2 here.

510 GOSUB Message ! Remove this line

520 GOTO User_pause

11-40 Example Programs

530

User_key3: ! Example Marker Function

540

550 OQUTPUT @Rfna;"CALC1:MARK1 ON"

560 OQUTPUT @Rfna;"CALC1:MARK:FUNC MAX"

570 GOTO User_pause

580 !

590 User_key4: ! Define softkey 6 here.
600 OQUTPUT @Rfna;"CALC1:MARK1 ON"

610 OUTPUT @Hp8712;"CALC1:MARK:MAX:LEFT"

620 GOTO User_pause

630 !

640 User_keyb: ! Define softkey 5 here.
650 OQUTPUT @Hp8712;"CALC1:MARK1 ON"

660 OUTPUT @Hp8712;"CALC1:MARK:MAX:RIGHT"

670 GOTO User_pause

680 !

690 User_key6: ! Zoom on Cable

700 OUTPUT @Hp8712;"SENS1:STAT ON; *WAI"

710 OQUTPUT @Hp8712;"SENS1:FUNC ’FLOC 1,0’ ;DET NBAN; *WAI"
720 OUTPUT @Hp8712;"calcl:markl:x?"

730 ENTER @Hp8712;Distance

740 New_start=Distance-20

750 IF (New_start<0) THEN New_start=0

760 OUTPUT @Hp8712;'"sensl:dist:start "&VAL$(New_start)
770 OUTPUT @Hp8712;"sensl:dist:stop "&VAL$(Distance+20)
780 QUTPUT @Hp8712;"*opc?"

790 ENTER @Hp8712;0pc

800 GOTO User_pause

810 !

820 User_key7: ! Define softkey 7 here.
830 GOSUB Message ! Remove this line.

840 GOTO User_pause

850 !

860 Message: !

870 Str1$="This key is programmable."

880 Str2$="To modify, select"

890 Str3$="[System Options], [IBASIC], [Edit]."
900 OUTPUT @Rfna;"DISP:ANN:MESS ’"&Str1$&CHR$(10)&Str2$&CHR$ (10)&Str3$e"’
, MEDIUM"

910 RETURN

920 !

930 END

Example Programs

11-41

BARCODE — Using Bar Code Reader

10 oo
20 !

30 ! IBASIC program: BARCODE - Using barcode reader
40 ! For 871xC and 8730A only!

50 !

60 ! This IBASIC program was written for a barcode

70 ! reader, but it 1s not required. Sets the 871x’s
80 ! state depending on model # of DUT being measured.
920 ! Expects to see BARCODE with the following format:
100 ! Model Number (6char), space, Serial Number (5char)
110 ! Valid Models: BPF175, BPF200, SAW134

120 ! REV C.03.00 961009.JVV

130 !

140 b ommmmm o
150 !

160 COM /Hpib/ @Rfna

170 COM /Scale/ Sc,INTEGER X,Y

180 DIM Name$[50],Stat$[50],Scan$[90],Lim$(1:3,1:5)[30],Test$(0:1) [4]
190 INTEGER Tab,Fail_flg,G(1:4)

200 !

210 Init:!

220 Test$(0)="PASS"

230 Test$(1)="FAIL"

240 ASSIGN @Rfna TO 800

250 Sc=1 ! Scales the 8711 drawing and DUT
260 X=3 ! Starting X posn of 8711 plot
270 Y=44 ! " y

280 Tab=38 ! Tab position for text

290 OUTPUT @Rfna;'"DIAG:PRES:SERV;*0PC?" !Presets to 871xC state
300 ENTER @Rfna;0Opc

310 OUTPUT @Rfna;'"DISP:PROG UPP"

320 GINIT

330 GCLEAR

340 GESCAPE 1,3;G(*)

350 WINDOW G(1),G(3),G(2),G(4)

360 OUTPUT @Rfna;''SENS1:STAT OFF;:SENS2:STAT ON"
370 OUTPUT @Rfna;''DISP:WIND2:TRAC:Y:RP0OS 9"
380 OUTPUT @Rfna;'"ABOR;:INIT:CONT OFF"

390 Setup: !

400 BEEP 500, .1

410 INPUT "Enter Operator’s Name:" ,Name$

420 BEEP 3000, .03

430 INPUT "Enter Station Number:",Stat$

440 BEEP 3000, .03

450 OUTPUT @Rfna;'"SYST:DATE?"

460 ENTER ©@Rfna;Year,Month,Day

470 CALL Draw_na ! Draw HP8711

480 Box(418,44,212,163) ! Draw text box
490 PRINT TABXY(Tab,3);"Oper: '";Name$[1,15]
500 PRINT TABXY(Tab,4);"Station: ";Stat$[1,11]
510 PRINT TABXY(Tab,5);"Date: ";Year;Month;Day
520 Meas_dev: !

530 LOOP

11-42 Example Programs

540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
ONII
890
MHZ;
900
;STO
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050

CALL Draw_dut(1)
CALL Scan_dut(Scan$,Cent$,Span$,Loss$,Lim$(*))
PRINT TABXY(Tab,7);"Model: '"&Scan$[1,6]
PRINT TABXY(Tab,8);'"Serial: "&Scan$[8,12]
GOSUB Set_stim
DISP "MEASURING THE DEVICE"
OUTPUT @Rfna;'*CLS"
OUTPUT @Rfna;"ABOR;:INIT2:CONT OFF;:INIT2;*0PC?"
ENTER @Rfna;0Opc ! wait for end of sweep
OUTPUT @Rfna;''CALC2:MARK1 ON;MARK:FUNC MAX"
OUTPUT @Rfna;'"CALC2:MARK1:Y?"
ENTER @Rfna;Loss
OUTPUT @Rfna;'"STAT:QUES:LIM:EVENT"
ENTER @Rfna;Fail_flg
Disp_result: !
PRINT TABXY(Tab,9);'"Loss (dB): ";Loss
Fail_flg=BIT(Fail_flg,1) ! Bit 1 is for Ch2
IF Fail_flg THEN BEEP 2100, .5
Label(Test$(Fail_flg),78,58,22,5,0,1)
Continue: !
CALL Draw_dut(0)
BEEP 300, .05
INPUT "Disconnect DUT. Measure another? (Y/n)",Ans$
EXIT IF UPC$(Ans$[1,1])="N"
Label(Test$(Fail_flg),78,58,22,5,0,0)
END LOOP
OUTPUT @Rfna;'"ABOR;:INIT:CONT ON"
STOP
]
Set_stim: ! Set Fregs and Limit lines
OUTPUT @Rfna;'"DISP:ANN:FREQ:MODE CSPAN"
OUTPUT @Rfna;"SENS:FREQ:CENT "&Cent$&" MHZ;SPAN '"&Span$&" MHZ"
OUTPUT @Rfna;"DISP:WIND2:TRAC:Y:RLEV ";-PROUND(VAL(Loss$),1);"DB"
FOR I=1 TO 3 ! SET LIMIT LINES
OUTPUT @Rfna;"CALC2:LIM:SEGM"&VAL$(I)&":TYPE "&Lim$(I,1)&";STAT

OUTPUT @Rfna;"CALC2:LIM:SEGM"&VAL$(I)&":FREQ:STAR "&Lim$(I,2)&"
STOP "g&Lim$(I,3)&" MHZ"
OUTPUT @Rfna;"CALC2:LIM:SEGM"&VAL$(I)&" :AMPL:STAR "&Lim$(I,4)&"
P "gLim$(I,5)
NEXT I
OUTPUT @Rfna;''CALC2:LIM:DISP ON;STAT ON"
RETURN
END
U dt#ddidia#d SUBPROGRAMS ##d#t###i##
[}
Draw_na:SUB Draw_na
! This draws HP 8711 at origin X,Y

Box(144,62,287,125) ! Frame

Box(144,62,289,127)

Box(78,62,112,90) ! CRT

Box(78,62,114,94)

FOR I=25 TO 102 STEP 11! Keys
Box(146,1,9,6)

NEXT I

Example Programs

11-43

1060 Box(178,110,9,9) ! BEGIN

1070 Box(234,110,65,15) ! Drive
1080 Box(234,110,47,5)

1090 Circle(228,75,12) ! Knob
1100 Circle(187,19,7) ! Qut
1110 Circle(256,19,7) ! in
1120 Box(10,25,4,12) ! Switch
1130 Circle(10,41,3)

1140 Label ("RF 0UT",187,35,8,5,0,1)
1150 Label ("RF IN",256,35,8,5,0,1)
1160 SUBEND

1170 !

1180 Draw_dut:SUB Draw_dut (INTEGER Pen)
1190 ! This connects DUT to HP 8711
1200 PEN Pen

1210 Connect(187,19,200,-25,0)

1220 Box(221,-25,44,19)

1230 Connect(256,19,243,-25,0)

1240 PEN 1

1250 SUBEND

1260 !

1270 Scan_dut:SUB Scan_dut(Scan$,Cent$,Span$,Loss$,Lim$(*))
1280 LOOP

1290 Invalid=0

1300 Scan$="BPF175 12345"! Default model/serial
1310 BEEP 500,.05

1320 INPUT "Connect and scan the Device.",Scan$! SCAN BARCODE HERE
1330 IF LEN(Scan$)<12 THEN ! Valid device needs 12 char.
1340 Invalid=1

1350 ELSE

1360 Model$=Scan$[1,6]

1370 SELECT UPC$(TRIM$ (Model$))

1380 CASE "BPF175","BPF177"

1390 RESTORE F1

1400 CASE "BPF200"

1410 RESTORE F2

1420 CASE "SAW134"

1430 RESTORE F3

1440 CASE ELSE

1450 Invalid=1

1460 END SELECT

1470 END IF

1480 EXIT IF NOT Invalid

1490 DISP Scan$;" <<--is INVALID! Try again."
1500 BEEP 1500, .2

1510 WAIT 1

1520 END LOOP

1530 BEEP 3000, .03

1540 READ Cent$,Span$,Loss$,Lim$(*)

1550 ! Limit lines format: Center, Span, Loss, (LIM TYPE, STRT, STP,
STRTdB, STPdB)

1560 F1: DATA 175,250,2 ! 175 MHz BPF

1570 DATA "LMIN", 160,190,-5,-5

1580 DATA '"LMAX", 100,140,-50,-9

1590 DATA '"LMAX", 210,240,-7,-30

11-44 Example Programs

1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120

F2: DATA 200,100,1 ! 200 MHz BPF
DATA "LMIN", 196,204,-3,-3
DATA '"LMAX", 180,190,-40,-10
DATA '"LMAX", 210,220,-10,-40

F3: DATA 134,40,22 ! 134 MHz SAW BPF
DATA "LMIN", 128,140,-27,-27
DATA "LMAX", 123,125,-65,-30
DATA "LMAX", 143,145,-30,-65

SUBEND
[}

Box:SUB Box(Xpos,Ypos,Xsize,Ysize)
COM /Scale/ Sc,INTEGER X,Y
MOVE X+(Xpos-Xsize/2)*Sc,Y+(Ypos-Ysize/2)*Sc
RECTANGLE Xsize*Sc,Ysize*Sc

SUBEND
[}

Circle:SUB Circle(Xpos,Ypos,Radius)
COM /Scale/ Sc,INTEGER X,Y
MOVE X+Xpos*Sc,Y+Ypos*Sc
POLYGON Radius*Sc,16,16

SUBEND
[}

Connect:SUB Connect(X1,Y1,X2,Y2,How)
COM /Scale/ Sc,INTEGER X,Y
MOVE X+X1%3c,Y+Y1%xSc
SELECT How
CASE 1 !...diagonal

DRAW X+X2x3c,Y+Y2*Sc
CASE O
DRAW X+X1x3c,Y+Y2*Sc
DRAW X+X2x3c,Y+Y2*Sc
CASE -1
DRAW X+X2x3c,Y+Y1*xSc
DRAW X+X2x3c,Y+Y2*Sc
END SELECT
SUBEND
[}

Label:SUB Label(Text$,Xpos,Ypos,Size,Lorg,Ldr,Pen)
COM /Scale/ Sc,INTEGER X,Y
LORG Lorg
LDIR Ldr
CSIZE Size*Sc,.55
MOVE X+Xpos*Sc,Y+Ypos*Sc
PEN Pen
LABEL Text$
PEN 1

SUBEND
[}

Amp :SUB Amp (Xpos,Ypos,Size) ! Draws > Triangle
COM /Scale/ Sc,INTEGER X,Y
MOVE X+(Xpos+Size/2)*Sc,Y+Ypos*Sc
POLYGON Sizex*3c,3,3

SUBEND

Example Programs

11-45

STATS — Using Bar Code Reader

10

20

30

40

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520

IBASIC program: STATS - Collects statistics.

|
|
!
! This HP 8711 IBASIC program uses a barcode reader

! but it can be bypassed by simply pressing ENTER.

! Displays running average of selected BPF passbands.
! Finds linear avg of log data (ie Avg of 1dB & 5dB=3)
! Expects to see BARCODE with the following format:

! Model Number (6char), space, Serial Number (5char)

! Valid Models: BPF175, BPF200, SAW134

! For 871xC and 87304 only

! REV C.01.00 961009. JVV

|

COM /Hpib/ @Rfna

COM Csub_loaded

DIM A(1:1601),M(1:1601)

INTEGER Points,N,I,Chan

Points=201 ! # of trace points

Chan=2

ASSIGN @Rfna TO 800

IF NOT Csub_loaded THEN
LOADSUB Read_fdata FROM "XFER:MEM 0,0"
LOADSUB Write_fmem FROM "XFER:MEM 0,0"
Csub_loaded=1

END IF

OUTPUT @Rfna;"DIAG:PRES:SERV;*0PC?"

ENTER @Rfna;0pc

OUTPUT @Rfna;'"DISP:PROG UPP"

GINIT

GCLEAR

OUTPUT @Rfna;"DISP:ANN:MESS:STAT O"

OUTPUT @Rfna;'"SENS1:STAT OFF;:SENS2:STAT ON"

OUTPUT @Rfna;'"SENS2:SWE:POIN ";Points ! points

OUTPUT @Rfna;"DISP:WIND2:TRAC:Y:RPOS 9;PDIV 1 DB;*0PC?"

ENTER @Rfna;0pc

N=0

Setup: !

LO0OP
GOSUB Scan_next
! Softkey titles formatted for 871x usage
ON KEY 1 LABEL " AVER THIS DATA" GOSUB Avg_this
ON KEY 3 LABEL '"SCAN ANOTHER" GOSUB Scan_next
ON KEY &5 LABEL "DONE" GOSUB Exit
LO0OP
DISP "SELECT A SOFTKEY."
WAIT 1
DISP
WAIT .3

11-46 Example Programs

MEASURING "

READING DATA"

AVERAGING "

WRITING DATA"

AVG COMPLETE"

530 END LOOP

540 END LOOP

550 !

560 Exit: !

570 CLEAR SCREEN

580 DISP "PROGRAM PAUSED"

590 LOCAL @Rfna

600 PAUSE

610 RETURN

620 !

630 Scan_next: !

640 LOOP

650 Scan_dut(Model$,Serial$,Cent$,Span$,Loss$)

660 IF Model$="ABORT" THEN GOTO Exit

670 IF NOT N THEN Curr_model$=Model$

680 EXIT IF Model$=Curr_model$

690 DISP "Inconsistent Model #, Try again!"

700 BEEP 2100, .1

710 WAIT 1

720 END LOOP

730 CLEAR SCREEN

740 PRINT TABXY(1,4);'"Device currently under test:"
750 PRINT '"Model # ";Model$;" Serial # ";Serial$
760 PRINT TABXY(1,6);"# Avg’d:";N

770 PRINT TABXY(1,7);"Status of Serial # "&Serial$&":
780 GOSUB Set_stim

790 RETURN

800 !

810 Avg_this: !

820 PRINT TABXY(1,7);"Status of Serial # "&Serial$&":
830 Read_fdata(Chan,A(x))

840 N=N+1

850 PRINT TABXY(1,7);"Status of Serial # "&Serial$&":
860 IF N=1 THEN

870 MAT M=A

880 OUTPUT @Rfna;'"TRAC CH2SMEM,CH2SDATA ;*WAI"

890 OUTPUT @Rfna;"CALC2:MATH (IMPL);:DISP:WIND2:TRAC1 ON;TRAC2
ON;*WAI"

900 OUTPUT @Rfna;"ABOR;:INIT2:CONT ON;*WAI"

910 ELSE

920 FOR I=1 TO Points

930 M(I)=(N-1)/N*M(I)+A(I)/N

940 NEXT I

950 END IF

960 PRINT TABXY(1,6);"# Averaged:";N

970 PRINT TABXY(1,7);"Status of Serial # "&Serial$&":
980 Write_fmem(Chan,M(x*))

990 PRINT TABXY(1,7);"Status of Serial # "&Serial$&":
1000 GOSUB Scan_next

1010 RETURN

1020 !

1030 Set_stim:! Set Freqgs

1040 OUTPUT @Rfna;"DISP:ANN:FREQ:MODE CSPAN"

1050 OUTPUT @Rfna;"SENS:FREQ:CENT "&Cent$&" MHZ;SPAN "&Span$&" MHZ"
1060 OUTPUT @Rfna;'"DISP:WIND2:TRAC:Y:RLEV -"&Loss$&" DB;*0PC?"

Example Programs

11-47

1070 ENTER @Rfna;0Opc
1080 RETURN

1090 !

1100 END

1110 !

1120 vV ########% SUBPROGRAMS #########

1130 !

1140 Scan_dut:SUB Scan_dut(Model$,Serial$,Cent$,Span$,Loss$)
1150 ALLOCATE Scan$[80]

1160 LOOP

1170 Invalid=0

1180 Scan$="ABORT"

1190 Scan$="BPF175 12345" !####### These 3 lines for demo only
1200 S$=VAL$ (RND*1.E+9) V####### Generates random S/N
1210 Scan$[8,12]1=S$[3,7] '####### Delete all to enable abort.
1220 BEEP 500,.05

1230 INPUT "Connect & scan DUT or leave blank to exit.",Scan$!SCAN
BARCODE

1240 IF LEN(Scan$)<12 THEN ! Valid device needs 12 char.
1250 Invalid=1

1260 ELSE

1270 Model$=Scan$[1,6]

1280 SELECT UPC$(TRIM$ (Model$))

1290 CASE "BPF175","BPF177"

1300 RESTORE F1

1310 CASE '"BPF200"

1320 RESTORE F2

1330 CASE '"SAw134"

1340 RESTORE F3

1350 CASE ELSE

1360 Invalid=1

1370 END SELECT

1380 END IF

1390 EXIT IF NOT Invalid

1400 IF POS(UPC$(Scan$),"ABORT") THEN

1410 Model$="ABORT"

1420 SUBEXIT

1430 END IF

1440 DISP Scan$;" <<--is INVALID! Try again."

1450 BEEP 1500, .2

1460 WAIT 1

1470 END LOOP

1480 BEEP 3000, .03

1490 Serial$=Scan$[8,12]

1500 READ Cent$,Span$,Loss$! Data format: Center, Span, Nom Loss
1510 F1: DATA 175,50,2 ! 175 MHz BPF

1520 F2: DATA 200,12,1 ! 200 MHz BPF

1530 F3: DATA 134,15,22 ! 134 MHz SAW BPF

1540 SUBEND

11-48 Example Programs

DATALOG — Using Bar Code Reader

IBASIC program: DATALOG - Logs trace data

! This HP
! but it
Stores

! Expects

8711 IBASIC program uses a barcode reader
can be bypassed by simply pressing ENTER.
ASCII trace data in internal NonVol memory

to see BARCODE with the following format:

! Model Number (6char), space, Serial Number (5char)

! Valid M
! For 871
! REV C.0

Init: !

! Make @

COM /Sy
! Identi
! and as

odels: BPF175, BPF200, SAW134
xC and 87304 only
1.00 961009. JVV

|
|
|
|
|
!
! until full, then copies stored files to floppy.
|
|
|
|
|
|

Hp87xx common to all subroutines
s_state/ @Hp87xx,Scode

fy the computer we are running on
sign the i/o port address to @Hp87xx

CALL Iden_port

OUTPUT @Hp87xx;"DIAG:PRES:SERV;*0PC?"! Presets even 8730 to 871xC

ENTER @
QUTPUT
GINIT
GCLEAR
GOSUB W
QUTPUT
QUTPUT
QUTPUT
QUTPUT
QUTPUT
QUTPUT
QUTPUT
ENTER @
Setup: !
LOOP

Hp87xx;0pc
Q@Hp87xx;"DISP:PROG UPP"

arning ! Warning may be deleted if desired
Q@Hp87xx;"DISP:ANN:MESS:STAT 0"

QHp87xx;"SENS1:STAT OFF;:SENS2:STAT ON"
Q@Hp87xx;"SENS2:SWE:POIN 201"! 201 points
QHp87xx;"DISP:WIND2:TRAC:Y:RPOS 9"

QHp87xx;"MMEM:MSIS ’MEM:’"

QHp87xx;"MMEM:INIT ’MEM:’,DOS"
QHp87xx;"MMEM:STOR:STAT:IST OFF;CORR OFF;TRAC OFF;*0PC?"
Hp87xx;0pc

GOSUB Scan_next

! So
ON K
ON K
ON K
ON K
LOOP

D

W

ftkey titles designed for 871x format
EY 1 LABEL "STORE THIS DATA" GOSUB Stor_mem

EY 2 LABEL "TRANSFER TO FLOPPY" CALL Store_disk
EY 3 LABEL "SCAN ANOTHER" GOSUB Scan_next
EY 5 LABEL "DONE" GOSUB Exit

ISP "SELECT A SOFTKEY"

AIT 1

Example Programs

11-49

1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050

DISP
WAIT .3
END LOOP
END LOOP

Exit: !

Store_disk

CLEAR SCREEN

DISP "PROGRAM PAUSED"
LOCAL @Hp87xx

PAUSE

RETURN

Scan_next: !

Scan_dut(Model$,Serial$,Cent$,Span$,Loss$)

IF Model$="ABORT'" THEN GOTO Exit

CLEAR SCREEN

PRINT TABXY(1,3);"Device currently under test:"
PRINT

PRINT '"Model # ";Model$;" Serial # ";Serial$

PRINT TABXY(1,7);"Status of Serial # "&Serial$&":

GOSUB Set_stim
RETURN

Stor_mem: !

PRINT TABXY(1,7);"Status of Serial # "&Serial$&":

Store_ram(Model$,Serial$)

PRINT TABXY(1,7);"Status of Serial # "&Serial$&":

GOSUB Scan_next
RETURN

Set_stim: ! Set Fregs

OUTPUT @Hp87xx;"DISP:ANN:FREQ:MODE CSPAN"

MEASURING "

STORING TO RAM"

STORING DONE "

OUTPUT Q@Hp87xx;'"SENS:FREQ:CENT "&Cent$&" MHZ;SPAN "&Span$&" MHZ"
OUTPUT @Hp87xx;"DISP:WIND2:TRAC:Y:RLEV -"&Loss$&" DB;*0PC?"

ENTER @Hp87xx;0pc
RETURN

Warning: !

BEEP 3000, .3
PRINT TABXY(15,4);"WARNING!'"

PRINT "This program will initialize the INTERNAL memory."

PRINT "All internally saved files will be lost!"
PRINT

PRINT '"Do you wish to continue? (y/N)"

INPUT "Continue?'",Ans$

CLEAR SCREEN

IF UPC$(Ans$[1,1])="Y" THEN RETURN

END

#iud###### SUBPROGRAMS ##t#ii###i#

Scan_dut:SUB Scan_dut(Model$,Serial$,Cent$,Span$,Loss$)

ALLOCATE Scan$[80]
LOOP

11-560 Example Programs

2060
2070
2080
2090
2100
2110
2120
BARCODE
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390

Invalid=0

Scan$="ABORT"

Scan$="BPF175 12345"!####### These 3 lines for demo only
S$=VAL$ (RND*1.E+9) ' ####### Generates random S/N
Scan$[8,12]=S$[3,7] #t###### Delete all to enable abort.
BEEP 500, .05

INPUT "Connect & scan DUT or leave blank to exit.",Scan$!SCAN

IF LEN(Scan$)<12 THEN ! Valid device needs 12 char.
Invalid=1
ELSE
Model$=Scan$[1,6]
SELECT UPC$(TRIM$ (Model$))
CASE "BPF175","BPF177"
RESTORE F1
CASE '"BPF200"
RESTORE F2
CASE '"SAw134"
RESTORE F3
CASE ELSE
Invalid=1
END SELECT
END IF

EXIT IF NOT Invalid

IF POS(UPC$(Scan$),"ABORT") THEN
Model$="ABORT"
SUBEXIT
END IF
DISP Scan$;" <<--is INVALID! Try again."
BEEP 1500, .2
WAIT 1

END LOOP

BEEP 3000, .03
Serial$=Scan$[8,12]
READ Cent$,Span$,Loss$

2400 ! Data format: Center, Span, Loss

2410 F1:
2420 F2:
2430 F3:

2440
2450 !
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590

DATA 175,300,2 ! 175 MHz BPF
DATA 200,100,1 ! 200 MHz BPF
DATA 134,30,22 ! 134 MHz SAW BPF

SUB Store_ram(Model$,Serial$)
COM /Sys_state/ @Hp87xx,Scode
Id$=Model$[3,4]&"_"&Serial$! 2 unique chars + Ser
ALLOCATE Err$[80]
DISABLE
REPEAT

OUTPUT @Hp87xx;"*CLS"

OUTPUT @Hp87xx;"MMEM:MSIS ’MEM:’"

OUTPUT Q@Hp87xx;"MMEM:STOR:TRAC CH2FDATA,’"&Id$&"’ ;*WAI"
OUTPUT @Hp87xx;"SYST:ERR?"

ENTER @Hp87xx;Err$

SELECT VAL(Err$)

CASE 0! No Problem

CASE -254! Internal Mem full

Example Programs

11-51

2600 CALL Store_disk

2610 CASE -257! dupl file name

2620 OUTPUT @Hp87xx;"MMEM:DEL ’"&Id$&"’;*WAI" 'ERASE OLD
2630 CASE ELSE

2640 BEEP 2000, .5

2650 DISP Err$;

2660 INPUT " Fix, Press ENTER",Ans$

2670 END SELECT

2680 UNTIL VAL(Err$)=0

2690 ENABLE

2700 SUBEND

2710 !

2720 SUB Store_disk

2730 COM /Sys_state/ @Hp87xx,Scode

2740 ALLOCATE Err$[80]

2750 BEEP 700, .1

2760 DISP "Standby: Transferring internal files to disk."
2770 LOOP

2780 OUTPUT @Hp87xx;"*CL3"

2790 OQUTPUT @Hp87xx;"MMEM:COPY ’*.%’ , ’INT:’;*WAI"
2800 OUTPUT @Hp87xx;"SYST:ERR?"

2810 ENTER QHp87xx;Err$

2820 EXIT IF NOT VAL(Err$)

2830 GOSUB Trap_err

2840 END LOOP

2850 OUTPUT @Hp87xx;"MMEM:MSIS ’MEM:’;DEL ’x*.%’"
2860 SUBEXIT

2870 !

2880 Trap_err: !

2890 IF VAL(Err$)=-250 THEN SUBEXIT! no file to xfer
2900 BEEP 2000, .5

2910 CLEAR SCREEN

2920 PRINT TABXY(1,4);"DISK ERROR DETECTED"

2930 PRINT 'sk* "EErr$&" s*x"

2940 INPUT "Fix above problem, then press ENTER",Ans$
2950 CLEAR SCREEN

2960 SUBEND

2970 !

2980 SUB Iden_port

2990 Iden_port: ! Tdentify IO port to use

3000 COM /Sys_state/ @Hp87xx,Scode

3010 !

3020 IF POS(SYSTEM$("SYSTEM ID"),"HP 87")<>0 THEN
3030 ASSIGN @Hp87xx TO 800

3040 Scode=8

3050 ELSE

3060 ASSIGN @Hp87xx TO 716

3070 Scode=7

3080 END IF

3090 SUBEND! Iden_port

11-62 Example Programs

L AL
YES BPF175 00123

L ML AARTAR R R
NO BPF175 00156

I IAARIRRIMIANNE
RUN BPF175 00560

L WA RAR IR O
PAUSE BPF175 00758

L LA ARVER AR
ABORT BPF175 01023

A R
CONT BPF200 00045

I AR
ENTER (blank) BPF200 00059

LONEE T TR
BENCH 4500 (Station) BPF200 0077
R 111
BENCH 5300 (Station) SAW134 00707
ULAUNATOARWEAMED — (OROARE SRR RArR
J VALLELUNGA SAW134 00721
AUAATRLCARTRARTAAOANOM ANONOARELSRIIIOD b

LENE CORRIGAN SAW134 00776
Figure 11-1. Sample Bar Codes

Example Programs 11-b3

Index

A

ABORT, 8-8
active controller, 2-7
allocating memory, 1-3
annotations

custom, 7-5
arrays, 6-3
ASCII file, 4-2
ASCII word processors, 5-2
ASSIGN, 2-3
AUTOSTART, 4-3
AUTOSTART programs, 3-1

B

BARCODE
example program, 11-4
bar codes
sample, 11-53
binary file, 4-2
breakpoints
setting, 6-2
buffer
HP-IB, 2-2
program, 2-1
bus
external, 8-11
internal, 8-11
bus management
general, 8-5

C

character entry, 5-7
CLEAR, 8-7
codes
bar, 11-53
continue command, 3-1
control
passing, 8-10
controller
active, 2-7
synchronization, 8-14
system, 2-7
controller, external
interfacing with, 8-13
conventions
typographical, 1-3

D

DATA_EXT

example program, 11-1
DATA_INT

example program, 11-1
DATALOG

example program, 11-4
data transfer, 8-15
debugging, 6-1
deleted text

to recall, 5-8
deleting text, 5-8
disabling the Pause key, 3-3
disk

to select, 4-1
displaying text, 7-4
display partitions, 5-9, 7-1
DOWNLOAD

example program, 11-1
downloading programs, 8-17
DRAWS71X

example program, 11-1
drawing figures, 7-7
DUALCTRL

example program, 11-2

E

echo
HP-IB, 2-8
Edit, 5-3
editing, 5-2, 5-6
editor
HP BASIC, 5-2
errors
displaying, 6-4
example program
BARCODE, 11-4
DATA_EXT, 11-1
DATA INT, 11-1
DATALOG, 11-4
DOWNLOAD, 11-1
DRAWS71X, 11-1
DUALCTRL, 11-2
REPORT, 11-2

Index-1

STATS, 11-4
TRICTRL, 11-2
UPLOAD, 11-2
USERBEG, 11-2
USERBEGI, 11-3
USERBEG2, 11-3
USER_BIT, 11-3
USERKEYS, 11-3
external bus, 8-11
external controller
interfacing with, 8-13
external keyboard, 3-2, 5-5

F

file
ASCII, 4-2
binary, 4-2
File Type, 4-2

G
GET, 4-1
graphics, 7-5
SCPI commands, 7-10

H

HP BASIC editor, 5-2
HP-IB

general structure, 8-2
HP-IB buffer, 2-2
HP-IB device selectors, 8-1
HP-IB echo, 2-8

I

IBASIC
synchronize with an external controller,
8-14
IBASIC Display , 5-9
IBASIC editor, 5-3
IBASIC operations, 2-6
IBASIC Utilities 5H-12
instrument preset, 2-7
internal bus, 8-11

K

keyboard

external, 3-2, 5-5
keyboard overlay, 3-2
keystroke recording, 2-1

L

label window, 5-7
LINE TYPE, 7-9
LOAD, 4-1

local, 8-7

Index-2

LOCAL 8, 3-3
local lockout, 8-6
LOCAL LOCKOUT 8, 3-3
lockout

local, 8-6

M

memory allocation, 1-3, 3-2
message windows, 7-5
mnemonics

SCPI, 2-3

)

operations
IBASIC, 2-6

OUTPUT, 2-3

overview, 1-2

P

parallel port, 8-3
partitions

display, 5-9, 7-1
PASS CONTROL, 8-12
passing control, 8-10
PAUSE, 3-2
Pause key, to disable, 3-3
pausing a program, 3-2
pop-up messages, 7-5
ports

serial and parallel, 8-3
(PRESET), 2-7
preset operation, 2-7
program

to pause, 3-2

to recall, 4-3

to run, 3-1

to stop, 3-4
program buffer, 2-1
program recording, 2-1
programs

downloading and uploading, 8-17

Q

querying variables, 8-16

R

READIO, 8-3
recalling a deleted line, 5-8
recalling a program, 4-3
Recall Program, 4-3
recording

keystroke, 2-1
recording programs, 2-1
reference material, 1-1

remote, 8-6
renumbering, 5-9
REPORT

example program, 11-2
RE-SAVE, 4-1
RE-STORE, 4-1
RUN, 3-1
running a program, 3-1

S

sample bar codes, 11-53
SAVE, 4-1
Save Program, 4-2
(SAVERECALD), 4-1
SCPI mnemonics, 2-3
selecting a disk, 4-1
serial poll, 8-10
serial port, 8-3
service requests, 8-8
setting variables, 8-16
SRQs, 8-8
STATS

example program, 11-4
status information, 8-14
STOP, 3-4
stopping a program, 3-4
STORE, 4-1
strings, 6-3
subprograms, 9-1
synchronization, 2-6, 8-14
system controller, 2-7

T

template
keyboard, 3-2
text

to display, 7-4
timing, 2-6
transferring data, 8-15
TRICTRL

example program, 11-2
trigger, 8-7

typographical conventions, 1-3

U

UPLOAD

example program, 11-2
uploading programs, 8-17
USERBEG

example program, 11-2
USERBEG1

example program, 11-3
USERBEG2

example program, 11-3
USER_BIT

example program, 11-3
USERKEYS

example program, 11-3
Utilities , 5-12

A%
variables, 6-2

setting and querying, 8-16

\\%
window
label, 5-7
word processors, 5-2
WRITEIO, 8-3

Index-3

	Hewlett-Packard to Agilent Technologies Transition
	Title Page
	Contents
	1. Introduction
	Overview of HP Instrument BASIC
	Using HP Instrument BASIC
	Allocating Internal Memor for IBASIC Use
	Typographical Conventions

	2. Recording Programs
	Keystroke Recording
	What's in a Recorded Program
	How Recording Works
	Operations That Do Not Record
	Avoiding Recording Errors

	3. Running, Pausing, and Stopping Programs
	Starting Programs Automatically
	Running and Continuing a Program
	Pausing a Program
	Stopping a Program

	4. Saving and Recalling Programs
	Selecting a Disk
	Saving a Program
	AUTOST Programs
	Recalling a Program
	CAT to a STring Array Exception

	5. Developing Programs
	External Editors
	Editing Your Program Using Edit
	Using IBASIC Display
	Using Utilities

	6. Debugging Programs
	Setting Breakpoints
	Examining Variable
	Displaying the Last Error Encountered

	7. Graphics and Display Techniques
	Using the Display Partitions
	Displaying Text
	Using Graphics
	Drawing Figures
	SCPI Graphics Commands

	8. Interfacing with External Devices
	Communication with Devices
	General Bus Management
	The IBASIC HP-IB Model
	Interfacing with an External Controller

	9. Using Subprograms
	User-Controlled Subprograms
	Built-In High-Speed Subprograms
	Avoiding Multple Loads of Subprograms

	10. IBASIC Keyword Summary
	11. Example Programs
	Example Program Listing

	Index

